រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-2x+3y=-10,-3x+3y=-3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-2x+3y=-10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-2x=-3y-10
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2}\left(-3y-10\right)
ចែកជ្រុងទាំងពីនឹង -2។
x=\frac{3}{2}y+5
គុណ -\frac{1}{2} ដង -3y-10។
-3\left(\frac{3}{2}y+5\right)+3y=-3
ជំនួស \frac{3y}{2}+5 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -3x+3y=-3។
-\frac{9}{2}y-15+3y=-3
គុណ -3 ដង \frac{3y}{2}+5។
-\frac{3}{2}y-15=-3
បូក -\frac{9y}{2} ជាមួយ 3y។
-\frac{3}{2}y=12
បូក 15 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-8
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{3}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{2}\left(-8\right)+5
ជំនួស -8 សម្រាប់ y ក្នុង x=\frac{3}{2}y+5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-12+5
គុណ \frac{3}{2} ដង -8។
x=-7
បូក 5 ជាមួយ -12។
x=-7,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-2x+3y=-10,-3x+3y=-3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-2&3\\-3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-2&3\\-3&3\end{matrix}\right))\left(\begin{matrix}-2&3\\-3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\-3&3\end{matrix}\right))\left(\begin{matrix}-10\\-3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-2&3\\-3&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\-3&3\end{matrix}\right))\left(\begin{matrix}-10\\-3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\-3&3\end{matrix}\right))\left(\begin{matrix}-10\\-3\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-2\times 3-3\left(-3\right)}&-\frac{3}{-2\times 3-3\left(-3\right)}\\-\frac{-3}{-2\times 3-3\left(-3\right)}&-\frac{2}{-2\times 3-3\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-10\\-3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10-\left(-3\right)\\-10-\frac{2}{3}\left(-3\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-8\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-7,y=-8
ទាញយកធាតុម៉ាទ្រីស x និង y។
-2x+3y=-10,-3x+3y=-3
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2x+3x+3y-3y=-10+3
ដក -3x+3y=-3 ពី -2x+3y=-10 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2x+3x=-10+3
បូក 3y ជាមួយ -3y។ ការលុបតួ 3y និង -3y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
x=-10+3
បូក -2x ជាមួយ 3x។
x=-7
បូក -10 ជាមួយ 3។
-3\left(-7\right)+3y=-3
ជំនួស -7 សម្រាប់ x ក្នុង -3x+3y=-3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
21+3y=-3
គុណ -3 ដង -7។
3y=-24
ដក 21 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-8
ចែកជ្រុងទាំងពីនឹង 3។
x=-7,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។