ដោះស្រាយសម្រាប់ y, x
x=-1
y=0
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-10y+9x=-9,10y+5x=-5
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-10y+9x=-9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-10y=-9x-9
ដក 9x ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{1}{10}\left(-9x-9\right)
ចែកជ្រុងទាំងពីនឹង -10។
y=\frac{9}{10}x+\frac{9}{10}
គុណ -\frac{1}{10} ដង -9x-9។
10\left(\frac{9}{10}x+\frac{9}{10}\right)+5x=-5
ជំនួស \frac{9+9x}{10} សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត 10y+5x=-5។
9x+9+5x=-5
គុណ 10 ដង \frac{9+9x}{10}។
14x+9=-5
បូក 9x ជាមួយ 5x។
14x=-14
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង 14។
y=\frac{9}{10}\left(-1\right)+\frac{9}{10}
ជំនួស -1 សម្រាប់ x ក្នុង y=\frac{9}{10}x+\frac{9}{10}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=\frac{-9+9}{10}
គុណ \frac{9}{10} ដង -1។
y=0
បូក \frac{9}{10} ជាមួយ -\frac{9}{10} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
y=0,x=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-10y+9x=-9,10y+5x=-5
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-10&9\\10&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-5\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-10&9\\10&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-10&9\\10&5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-9\times 10}&-\frac{9}{-10\times 5-9\times 10}\\-\frac{10}{-10\times 5-9\times 10}&-\frac{10}{-10\times 5-9\times 10}\end{matrix}\right)\left(\begin{matrix}-9\\-5\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{28}&\frac{9}{140}\\\frac{1}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-9\\-5\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{28}\left(-9\right)+\frac{9}{140}\left(-5\right)\\\frac{1}{14}\left(-9\right)+\frac{1}{14}\left(-5\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=0,x=-1
ទាញយកធាតុម៉ាទ្រីស y និង x។
-10y+9x=-9,10y+5x=-5
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
10\left(-10\right)y+10\times 9x=10\left(-9\right),-10\times 10y-10\times 5x=-10\left(-5\right)
ដើម្បីធ្វើឲ្យ -10y និង 10y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 10 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -10។
-100y+90x=-90,-100y-50x=50
ផ្ទៀងផ្ទាត់។
-100y+100y+90x+50x=-90-50
ដក -100y-50x=50 ពី -100y+90x=-90 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
90x+50x=-90-50
បូក -100y ជាមួយ 100y។ ការលុបតួ -100y និង 100y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
140x=-90-50
បូក 90x ជាមួយ 50x។
140x=-140
បូក -90 ជាមួយ -50។
x=-1
ចែកជ្រុងទាំងពីនឹង 140។
10y+5\left(-1\right)=-5
ជំនួស -1 សម្រាប់ x ក្នុង 10y+5x=-5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
10y-5=-5
គុណ 5 ដង -1។
10y=0
បូក 5 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=0
ចែកជ្រុងទាំងពីនឹង 10។
y=0,x=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}