ដោះស្រាយសម្រាប់ x, y
x=0
y=-16
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
4x+y+16=0,4x-y-16=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x+y+16=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x+y=-16
ដក 16 ពីជ្រុងទាំងពីរនៃសមីការរ។
4x=-y-16
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(-y-16\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=-\frac{1}{4}y-4
គុណ \frac{1}{4} ដង -y-16។
4\left(-\frac{1}{4}y-4\right)-y-16=0
ជំនួស -\frac{y}{4}-4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x-y-16=0។
-y-16-y-16=0
គុណ 4 ដង -\frac{y}{4}-4។
-2y-16-16=0
បូក -y ជាមួយ -y។
-2y-32=0
បូក -16 ជាមួយ -16។
-2y=32
បូក 32 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-16
ចែកជ្រុងទាំងពីនឹង -2។
x=-\frac{1}{4}\left(-16\right)-4
ជំនួស -16 សម្រាប់ y ក្នុង x=-\frac{1}{4}y-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=4-4
គុណ -\frac{1}{4} ដង -16។
x=0
បូក -4 ជាមួយ 4។
x=0,y=-16
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x+y+16=0,4x-y-16=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\16\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&1\\4&-1\end{matrix}\right))\left(\begin{matrix}4&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-16\\16\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&1\\4&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-16\\16\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\4&-1\end{matrix}\right))\left(\begin{matrix}-16\\16\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-4}&-\frac{1}{4\left(-1\right)-4}\\-\frac{4}{4\left(-1\right)-4}&\frac{4}{4\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}-16\\16\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-16\\16\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\left(-16\right)+\frac{1}{8}\times 16\\\frac{1}{2}\left(-16\right)-\frac{1}{2}\times 16\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-16\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=-16
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x+y+16=0,4x-y-16=0
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4x-4x+y+y+16+16=0
ដក 4x-y-16=0 ពី 4x+y+16=0 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y+y+16+16=0
បូក 4x ជាមួយ -4x។ ការលុបតួ 4x និង -4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
2y+16+16=0
បូក y ជាមួយ y។
2y+32=0
បូក 16 ជាមួយ 16។
2y=-32
ដក 32 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-16
ចែកជ្រុងទាំងពីនឹង 2។
4x-\left(-16\right)-16=0
ជំនួស -16 សម្រាប់ y ក្នុង 4x-y-16=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
4x+16-16=0
គុណ -1 ដង -16។
4x=0
បូក 16 ជាមួយ -16។
x=0
ចែកជ្រុងទាំងពីនឹង 4។
x=0,y=-16
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}