ដោះស្រាយសម្រាប់ x, y
x=0
y=0
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\sqrt{3}x-2\sqrt{2}y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដាក់ជាកត្តា 8=2^{2}\times 2។ សរសេរឡើងវិញនូវឬសការេនៃផលគុណ \sqrt{2^{2}\times 2} ជាផលគុណនៃឬសការេ \sqrt{2^{2}}\sqrt{2}។ យកឬសការ៉េនៃ 2^{2}។
\sqrt{2}x+\sqrt{3}y=0,\sqrt{3}x+\left(-2\sqrt{2}\right)y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
\sqrt{2}x+\sqrt{3}y=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
\sqrt{2}x=\left(-\sqrt{3}\right)y
ដក \sqrt{3}y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{\sqrt{2}}{2}\left(-\sqrt{3}\right)y
ចែកជ្រុងទាំងពីនឹង \sqrt{2}។
x=\left(-\frac{\sqrt{6}}{2}\right)y
គុណ \frac{\sqrt{2}}{2} ដង -\sqrt{3}y។
\sqrt{3}\left(-\frac{\sqrt{6}}{2}\right)y+\left(-2\sqrt{2}\right)y=0
ជំនួស -\frac{\sqrt{6}y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត \sqrt{3}x+\left(-2\sqrt{2}\right)y=0។
\left(-\frac{3\sqrt{2}}{2}\right)y+\left(-2\sqrt{2}\right)y=0
គុណ \sqrt{3} ដង -\frac{\sqrt{6}y}{2}។
\left(-\frac{7\sqrt{2}}{2}\right)y=0
បូក -\frac{3\sqrt{2}y}{2} ជាមួយ -2\sqrt{2}y។
y=0
ចែកជ្រុងទាំងពីនឹង -\frac{7\sqrt{2}}{2}។
x=0
ជំនួស 0 សម្រាប់ y ក្នុង x=\left(-\frac{\sqrt{6}}{2}\right)y។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=0,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
\sqrt{3}x-2\sqrt{2}y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដាក់ជាកត្តា 8=2^{2}\times 2។ សរសេរឡើងវិញនូវឬសការេនៃផលគុណ \sqrt{2^{2}\times 2} ជាផលគុណនៃឬសការេ \sqrt{2^{2}}\sqrt{2}។ យកឬសការ៉េនៃ 2^{2}។
\sqrt{2}x+\sqrt{3}y=0,\sqrt{3}x+\left(-2\sqrt{2}\right)y=0
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
\sqrt{3}\sqrt{2}x+\sqrt{3}\sqrt{3}y=0,\sqrt{2}\sqrt{3}x+\sqrt{2}\left(-2\sqrt{2}\right)y=0
ដើម្បីធ្វើឲ្យ \sqrt{2}x និង \sqrt{3}x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ \sqrt{3} និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ \sqrt{2}។
\sqrt{6}x+3y=0,\sqrt{6}x-4y=0
ផ្ទៀងផ្ទាត់។
\sqrt{6}x+\left(-\sqrt{6}\right)x+3y+4y=0
ដក \sqrt{6}x-4y=0 ពី \sqrt{6}x+3y=0 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
3y+4y=0
បូក \sqrt{6}x ជាមួយ -\sqrt{6}x។ ការលុបតួ \sqrt{6}x និង -\sqrt{6}x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
7y=0
បូក 3y ជាមួយ 4y។
y=0
ចែកជ្រុងទាំងពីនឹង 7។
\sqrt{3}x=0
ជំនួស 0 សម្រាប់ y ក្នុង \sqrt{3}x+\left(-2\sqrt{2}\right)y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=0
ចែកជ្រុងទាំងពីនឹង \sqrt{3}។
x=0,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}