ដោះស្រាយសម្រាប់ x, y
x = \frac{419612}{7269} = 57\frac{5279}{7269} \approx 57.726234695
y = \frac{417041}{7269} = 57\frac{2708}{7269} \approx 57.372540927
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x+92y=5336
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 92។
79x-y=4503
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 79។
x+92y=5336,79x-y=4503
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+92y=5336
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-92y+5336
ដក 92y ពីជ្រុងទាំងពីរនៃសមីការរ។
79\left(-92y+5336\right)-y=4503
ជំនួស -92y+5336 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 79x-y=4503។
-7268y+421544-y=4503
គុណ 79 ដង -92y+5336។
-7269y+421544=4503
បូក -7268y ជាមួយ -y។
-7269y=-417041
ដក 421544 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{417041}{7269}
ចែកជ្រុងទាំងពីនឹង -7269។
x=-92\times \frac{417041}{7269}+5336
ជំនួស \frac{417041}{7269} សម្រាប់ y ក្នុង x=-92y+5336។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{38367772}{7269}+5336
គុណ -92 ដង \frac{417041}{7269}។
x=\frac{419612}{7269}
បូក 5336 ជាមួយ -\frac{38367772}{7269}។
x=\frac{419612}{7269},y=\frac{417041}{7269}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+92y=5336
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 92។
79x-y=4503
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 79។
x+92y=5336,79x-y=4503
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&92\\79&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5336\\4503\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}1&92\\79&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&92\\79&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&92\\79&-1\end{matrix}\right))\left(\begin{matrix}5336\\4503\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-92\times 79}&-\frac{92}{-1-92\times 79}\\-\frac{79}{-1-92\times 79}&\frac{1}{-1-92\times 79}\end{matrix}\right)\left(\begin{matrix}5336\\4503\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7269}&\frac{92}{7269}\\\frac{79}{7269}&-\frac{1}{7269}\end{matrix}\right)\left(\begin{matrix}5336\\4503\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7269}\times 5336+\frac{92}{7269}\times 4503\\\frac{79}{7269}\times 5336-\frac{1}{7269}\times 4503\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{419612}{7269}\\\frac{417041}{7269}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{419612}{7269},y=\frac{417041}{7269}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+92y=5336
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 92។
79x-y=4503
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 79។
x+92y=5336,79x-y=4503
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
79x+79\times 92y=79\times 5336,79x-y=4503
ដើម្បីធ្វើឲ្យ x និង 79x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 79 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
79x+7268y=421544,79x-y=4503
ផ្ទៀងផ្ទាត់។
79x-79x+7268y+y=421544-4503
ដក 79x-y=4503 ពី 79x+7268y=421544 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
7268y+y=421544-4503
បូក 79x ជាមួយ -79x។ ការលុបតួ 79x និង -79x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
7269y=421544-4503
បូក 7268y ជាមួយ y។
7269y=417041
បូក 421544 ជាមួយ -4503។
y=\frac{417041}{7269}
ចែកជ្រុងទាំងពីនឹង 7269។
79x-\frac{417041}{7269}=4503
ជំនួស \frac{417041}{7269} សម្រាប់ y ក្នុង 79x-y=4503។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
79x=\frac{33149348}{7269}
បូក \frac{417041}{7269} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{419612}{7269}
ចែកជ្រុងទាំងពីនឹង 79។
x=\frac{419612}{7269},y=\frac{417041}{7269}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}