រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5},\frac{1}{2}x+\frac{1}{8}y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5}
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
\frac{1}{5}x=-\frac{1}{4}y+\frac{4}{5}
ដក \frac{y}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=5\left(-\frac{1}{4}y+\frac{4}{5}\right)
គុណជ្រុងទាំងពីរនឹង 5។
x=-\frac{5}{4}y+4
គុណ 5 ដង -\frac{y}{4}+\frac{4}{5}។
\frac{1}{2}\left(-\frac{5}{4}y+4\right)+\frac{1}{8}y=2
ជំនួស -\frac{5y}{4}+4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត \frac{1}{2}x+\frac{1}{8}y=2។
-\frac{5}{8}y+2+\frac{1}{8}y=2
គុណ \frac{1}{2} ដង -\frac{5y}{4}+4។
-\frac{1}{2}y+2=2
បូក -\frac{5y}{8} ជាមួយ \frac{y}{8}។
-\frac{1}{2}y=0
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=0
គុណជ្រុងទាំងពីរនឹង -2។
x=4
ជំនួស 0 សម្រាប់ y ក្នុង x=-\frac{5}{4}y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=4,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5},\frac{1}{2}x+\frac{1}{8}y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{8}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}&-\frac{\frac{1}{4}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}&\frac{\frac{1}{5}}{\frac{1}{5}\times \frac{1}{8}-\frac{1}{4}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}&\frac{5}{2}\\5&-2\end{matrix}\right)\left(\begin{matrix}\frac{4}{5}\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}\times \frac{4}{5}+\frac{5}{2}\times 2\\5\times \frac{4}{5}-2\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
x=4,y=0
ទាញយកធាតុម៉ាទ្រីស x និង y។
\frac{1}{5}x+\frac{1}{4}y=\frac{4}{5},\frac{1}{2}x+\frac{1}{8}y=2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
\frac{1}{2}\times \frac{1}{5}x+\frac{1}{2}\times \frac{1}{4}y=\frac{1}{2}\times \frac{4}{5},\frac{1}{5}\times \frac{1}{2}x+\frac{1}{5}\times \frac{1}{8}y=\frac{1}{5}\times 2
ដើម្បីធ្វើឲ្យ \frac{x}{5} និង \frac{x}{2} ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ \frac{1}{2} និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ \frac{1}{5}។
\frac{1}{10}x+\frac{1}{8}y=\frac{2}{5},\frac{1}{10}x+\frac{1}{40}y=\frac{2}{5}
ផ្ទៀងផ្ទាត់។
\frac{1}{10}x-\frac{1}{10}x+\frac{1}{8}y-\frac{1}{40}y=\frac{2-2}{5}
ដក \frac{1}{10}x+\frac{1}{40}y=\frac{2}{5} ពី \frac{1}{10}x+\frac{1}{8}y=\frac{2}{5} ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
\frac{1}{8}y-\frac{1}{40}y=\frac{2-2}{5}
បូក \frac{x}{10} ជាមួយ -\frac{x}{10}។ ការលុបតួ \frac{x}{10} និង -\frac{x}{10} បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
\frac{1}{10}y=\frac{2-2}{5}
បូក \frac{y}{8} ជាមួយ -\frac{y}{40}។
\frac{1}{10}y=0
បូក \frac{2}{5} ជាមួយ -\frac{2}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
y=0
គុណជ្រុងទាំងពីរនឹង 10។
\frac{1}{2}x=2
ជំនួស 0 សម្រាប់ y ក្នុង \frac{1}{2}x+\frac{1}{8}y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=4
គុណជ្រុងទាំងពីរនឹង 2។
x=4,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។