ដោះស្រាយសម្រាប់ x, y
x=-4
y=3
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
\frac{1}{4}x+\frac{1}{3}y=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
\frac{1}{4}x=-\frac{1}{3}y
ដក \frac{y}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=4\left(-\frac{1}{3}\right)y
គុណជ្រុងទាំងពីរនឹង 4។
x=-\frac{4}{3}y
គុណ 4 ដង -\frac{y}{3}។
\frac{1}{2}\left(-\frac{4}{3}\right)y+\frac{1}{6}y=-\frac{3}{2}
ជំនួស -\frac{4y}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}។
-\frac{2}{3}y+\frac{1}{6}y=-\frac{3}{2}
គុណ \frac{1}{2} ដង -\frac{4y}{3}។
-\frac{1}{2}y=-\frac{3}{2}
បូក -\frac{2y}{3} ជាមួយ \frac{y}{6}។
y=3
គុណជ្រុងទាំងពីរនឹង -2។
x=-\frac{4}{3}\times 3
ជំនួស 3 សម្រាប់ y ក្នុង x=-\frac{4}{3}y។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-4
គុណ -\frac{4}{3} ដង 3។
x=-4,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{8}{3}\\4&-2\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\left(-\frac{3}{2}\right)\\-2\left(-\frac{3}{2}\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-4,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
\frac{1}{2}\times \frac{1}{4}x+\frac{1}{2}\times \frac{1}{3}y=0,\frac{1}{4}\times \frac{1}{2}x+\frac{1}{4}\times \frac{1}{6}y=\frac{1}{4}\left(-\frac{3}{2}\right)
ដើម្បីធ្វើឲ្យ \frac{x}{4} និង \frac{x}{2} ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ \frac{1}{2} និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ \frac{1}{4}។
\frac{1}{8}x+\frac{1}{6}y=0,\frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8}
ផ្ទៀងផ្ទាត់។
\frac{1}{8}x-\frac{1}{8}x+\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
ដក \frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8} ពី \frac{1}{8}x+\frac{1}{6}y=0 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
បូក \frac{x}{8} ជាមួយ -\frac{x}{8}។ ការលុបតួ \frac{x}{8} និង -\frac{x}{8} បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
\frac{1}{8}y=\frac{3}{8}
បូក \frac{y}{6} ជាមួយ -\frac{y}{24}។
y=3
គុណជ្រុងទាំងពីរនឹង 8។
\frac{1}{2}x+\frac{1}{6}\times 3=-\frac{3}{2}
ជំនួស 3 សម្រាប់ y ក្នុង \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
\frac{1}{2}x+\frac{1}{2}=-\frac{3}{2}
គុណ \frac{1}{6} ដង 3។
\frac{1}{2}x=-2
ដក \frac{1}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-4
គុណជ្រុងទាំងពីរនឹង 2។
x=-4,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}