ដោះស្រាយសម្រាប់ x, y
x = \frac{190806}{2903} = 65\frac{2111}{2903} \approx 65.727178781
y = -\frac{69696}{2903} = -24\frac{24}{2903} \approx -24.00826731
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x-33y=858
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 33។
88x-y=5808
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 88។
x-33y=858,88x-y=5808
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-33y=858
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=33y+858
បូក 33y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
88\left(33y+858\right)-y=5808
ជំនួស 858+33y សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 88x-y=5808។
2904y+75504-y=5808
គុណ 88 ដង 858+33y។
2903y+75504=5808
បូក 2904y ជាមួយ -y។
2903y=-69696
ដក 75504 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{69696}{2903}
ចែកជ្រុងទាំងពីនឹង 2903។
x=33\left(-\frac{69696}{2903}\right)+858
ជំនួស -\frac{69696}{2903} សម្រាប់ y ក្នុង x=33y+858។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{2299968}{2903}+858
គុណ 33 ដង -\frac{69696}{2903}។
x=\frac{190806}{2903}
បូក 858 ជាមួយ -\frac{2299968}{2903}។
x=\frac{190806}{2903},y=-\frac{69696}{2903}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-33y=858
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 33។
88x-y=5808
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 88។
x-33y=858,88x-y=5808
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}858\\5808\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-33\\88&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-33\\88&-1\end{matrix}\right))\left(\begin{matrix}858\\5808\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-33\times 88\right)}&-\frac{-33}{-1-\left(-33\times 88\right)}\\-\frac{88}{-1-\left(-33\times 88\right)}&\frac{1}{-1-\left(-33\times 88\right)}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}&\frac{33}{2903}\\-\frac{88}{2903}&\frac{1}{2903}\end{matrix}\right)\left(\begin{matrix}858\\5808\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2903}\times 858+\frac{33}{2903}\times 5808\\-\frac{88}{2903}\times 858+\frac{1}{2903}\times 5808\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{190806}{2903}\\-\frac{69696}{2903}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{190806}{2903},y=-\frac{69696}{2903}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-33y=858
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 33។
88x-y=5808
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរនៃសមីការរដោយ 88។
x-33y=858,88x-y=5808
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
88x+88\left(-33\right)y=88\times 858,88x-y=5808
ដើម្បីធ្វើឲ្យ x និង 88x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 88 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
88x-2904y=75504,88x-y=5808
ផ្ទៀងផ្ទាត់។
88x-88x-2904y+y=75504-5808
ដក 88x-y=5808 ពី 88x-2904y=75504 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2904y+y=75504-5808
បូក 88x ជាមួយ -88x។ ការលុបតួ 88x និង -88x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2903y=75504-5808
បូក -2904y ជាមួយ y។
-2903y=69696
បូក 75504 ជាមួយ -5808។
y=-\frac{69696}{2903}
ចែកជ្រុងទាំងពីនឹង -2903។
88x-\left(-\frac{69696}{2903}\right)=5808
ជំនួស -\frac{69696}{2903} សម្រាប់ y ក្នុង 88x-y=5808។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
88x=\frac{16790928}{2903}
ដក \frac{69696}{2903} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{190806}{2903}
ចែកជ្រុងទាំងពីនឹង 88។
x=\frac{190806}{2903},y=-\frac{69696}{2903}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}