ដោះស្រាយសម្រាប់ x, y
x=15
y=-6
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
2x-3y=48
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 6 ផលគុណរួមតូចបំផុតនៃ 3,2។
3x+5y=15
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 15 ផលគុណរួមតូចបំផុតនៃ 5,3។
2x-3y=48,3x+5y=15
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x-3y=48
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=3y+48
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(3y+48\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{3}{2}y+24
គុណ \frac{1}{2} ដង 48+3y។
3\left(\frac{3}{2}y+24\right)+5y=15
ជំនួស \frac{3y}{2}+24 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+5y=15។
\frac{9}{2}y+72+5y=15
គុណ 3 ដង \frac{3y}{2}+24។
\frac{19}{2}y+72=15
បូក \frac{9y}{2} ជាមួយ 5y។
\frac{19}{2}y=-57
ដក 72 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-6
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{19}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{2}\left(-6\right)+24
ជំនួស -6 សម្រាប់ y ក្នុង x=\frac{3}{2}y+24។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-9+24
គុណ \frac{3}{2} ដង -6។
x=15
បូក 24 ជាមួយ -9។
x=15,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x-3y=48
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 6 ផលគុណរួមតូចបំផុតនៃ 3,2។
3x+5y=15
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 15 ផលគុណរួមតូចបំផុតនៃ 5,3។
2x-3y=48,3x+5y=15
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\15\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}2&-3\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&-3\\3&5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&5\end{matrix}\right))\left(\begin{matrix}48\\15\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-3\times 3\right)}&-\frac{-3}{2\times 5-\left(-3\times 3\right)}\\-\frac{3}{2\times 5-\left(-3\times 3\right)}&\frac{2}{2\times 5-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}48\\15\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 48+\frac{3}{19}\times 15\\-\frac{3}{19}\times 48+\frac{2}{19}\times 15\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-6\end{matrix}\right)
ធ្វើនព្វន្ត។
x=15,y=-6
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x-3y=48
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 6 ផលគុណរួមតូចបំផុតនៃ 3,2។
3x+5y=15
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 15 ផលគុណរួមតូចបំផុតនៃ 5,3។
2x-3y=48,3x+5y=15
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3\times 2x+3\left(-3\right)y=3\times 48,2\times 3x+2\times 5y=2\times 15
ដើម្បីធ្វើឲ្យ 2x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
6x-9y=144,6x+10y=30
ផ្ទៀងផ្ទាត់។
6x-6x-9y-10y=144-30
ដក 6x+10y=30 ពី 6x-9y=144 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-9y-10y=144-30
បូក 6x ជាមួយ -6x។ ការលុបតួ 6x និង -6x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-19y=144-30
បូក -9y ជាមួយ -10y។
-19y=114
បូក 144 ជាមួយ -30។
y=-6
ចែកជ្រុងទាំងពីនឹង -19។
3x+5\left(-6\right)=15
ជំនួស -6 សម្រាប់ y ក្នុង 3x+5y=15។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-30=15
គុណ 5 ដង -6។
3x=45
បូក 30 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=15
ចែកជ្រុងទាំងពីនឹង 3។
x=15,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}