ដោះស្រាយសម្រាប់ p, q, r, s, t, u, v, w, x, y
y=3
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5p+4=18-2+p
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដើម្បីរកមើលពាក្យផ្ទុយនៃ 2-p សូមរកមើលពាក្យផ្ទុយនៃពាក្យនីមួយៗ។
5p+4=16+p
ដក 2 ពី 18 ដើម្បីបាន 16។
5p+4-p=16
ដក p ពីជ្រុងទាំងពីរ។
4p+4=16
បន្សំ 5p និង -p ដើម្បីបាន 4p។
4p=16-4
ដក 4 ពីជ្រុងទាំងពីរ។
4p=12
ដក 4 ពី 16 ដើម្បីបាន 12។
p=\frac{12}{4}
ចែកជ្រុងទាំងពីនឹង 4។
p=3
ចែក 12 នឹង 4 ដើម្បីបាន3។
q=3
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
r=3
ផ្ទៀងផ្ទាត់សមីការរទីបី។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
s=3
ផ្ទៀងផ្ទាត់សមីការរទីបួន។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
t=3
ផ្ទៀងផ្ទាត់សមីការរទីប្រាំ។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
u=3
ផ្ទៀងផ្ទាត់សមីការរ (6)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
v=3
ផ្ទៀងផ្ទាត់សមីការរ (7)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
w=3
ផ្ទៀងផ្ទាត់សមីការរ (8)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
x=3
ផ្ទៀងផ្ទាត់សមីការរ (9)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
y=3
ផ្ទៀងផ្ទាត់សមីការរ (10)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
p=3 q=3 r=3 s=3 t=3 u=3 v=3 w=3 x=3 y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}