ដោះស្រាយសម្រាប់ x, y, z, a, b, c, d
d=\frac{4}{15}\approx 0.266666667
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x=\frac{\frac{8}{15}}{2}
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{8}{15\times 2}
បង្ហាញ \frac{\frac{8}{15}}{2} ជាប្រភាគទោល។
x=\frac{8}{30}
គុណ 15 និង 2 ដើម្បីបាន 30។
x=\frac{4}{15}
កាត់បន្ថយប្រភាគ \frac{8}{30} ទៅតួដែលតូចបំផុតដោយដក និងលុបចេញ 2។
y=\frac{4}{15}-0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
y=\frac{4}{15}
ដក 0 ពី \frac{4}{15} ដើម្បីបាន \frac{4}{15}។
z=\frac{4}{15}
ផ្ទៀងផ្ទាត់សមីការរទីបី។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
a=\frac{4}{15}
ផ្ទៀងផ្ទាត់សមីការរទីបួន។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
b=\frac{4}{15}
ផ្ទៀងផ្ទាត់សមីការរទីប្រាំ។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
c=\frac{4}{15}
ផ្ទៀងផ្ទាត់សមីការរ (6)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
d=\frac{4}{15}
ផ្ទៀងផ្ទាត់សមីការរ (7)។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
x=\frac{4}{15} y=\frac{4}{15} z=\frac{4}{15} a=\frac{4}{15} b=\frac{4}{15} c=\frac{4}{15} d=\frac{4}{15}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}