ដោះស្រាយសម្រាប់ x, y, z, a
a=-53
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
3\left(x+3\right)+12x\left(-\frac{1}{2}\right)=x-1+12x\times \frac{1}{12}
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ អថេរ x មិនអាចស្មើនឹង 0 បានទេ ដោយសារការចែកនឹងសូន្យមិនត្រូវបានកំណត់។ គុណជ្រុងទាំងពីរនៃសមីការរនឹង 12x ផលគុណរួមតូចបំផុតនៃ 4x,2,12x,12។
3x+9+12x\left(-\frac{1}{2}\right)=x-1+12x\times \frac{1}{12}
ប្រើលក្ខណៈបំបែកដើម្បីគុណ 3 នឹង x+3។
3x+9-6x=x-1+12x\times \frac{1}{12}
គុណ 12 និង -\frac{1}{2} ដើម្បីបាន -6។
-3x+9=x-1+12x\times \frac{1}{12}
បន្សំ 3x និង -6x ដើម្បីបាន -3x។
-3x+9=x-1+x
គុណ 12 និង \frac{1}{12} ដើម្បីបាន 1។
-3x+9=2x-1
បន្សំ x និង x ដើម្បីបាន 2x។
-3x+9-2x=-1
ដក 2x ពីជ្រុងទាំងពីរ។
-5x+9=-1
បន្សំ -3x និង -2x ដើម្បីបាន -5x។
-5x=-1-9
ដក 9 ពីជ្រុងទាំងពីរ។
-5x=-10
ដក 9 ពី -1 ដើម្បីបាន -10។
x=\frac{-10}{-5}
ចែកជ្រុងទាំងពីនឹង -5។
x=2
ចែក -10 នឹង -5 ដើម្បីបាន2។
y=12\times 2-9\times 4\times 2-5
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
y=24-9\times 4\times 2-5
គុណ 12 និង 2 ដើម្បីបាន 24។
y=24-36\times 2-5
គុណ 9 និង 4 ដើម្បីបាន 36។
y=24-72-5
គុណ 36 និង 2 ដើម្បីបាន 72។
y=-48-5
ដក 72 ពី 24 ដើម្បីបាន -48។
y=-53
ដក 5 ពី -48 ដើម្បីបាន -53។
z=-53
ផ្ទៀងផ្ទាត់សមីការរទីបី។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
a=-53
ផ្ទៀងផ្ទាត់សមីការរទីបួន។ បញ្ចូលតម្លៃដែលស្គាល់នៃអថេរទៅក្នុងសមីការរ។
x=2 y=-53 z=-53 a=-53
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}