រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-y=6
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
4y+2x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
x-y=6,2x+4y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=6
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y+6
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2\left(y+6\right)+4y=0
ជំនួស y+6 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+4y=0។
2y+12+4y=0
គុណ 2 ដង y+6។
6y+12=0
បូក 2y ជាមួយ 4y។
6y=-12
ដក 12 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែកជ្រុងទាំងពីនឹង 6។
x=-2+6
ជំនួស -2 សម្រាប់ y ក្នុង x=y+6។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=4
បូក 6 ជាមួយ -2។
x=4,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-y=6
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
4y+2x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
x-y=6,2x+4y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\2&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-1}{4-\left(-2\right)}\\-\frac{2}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6\\-\frac{1}{3}\times 6\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=4,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-y=6
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
4y+2x=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 2x ទៅជ្រុងទាំងពីរ។
x-y=6,2x+4y=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+2\left(-1\right)y=2\times 6,2x+4y=0
ដើម្បីធ្វើឲ្យ x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
2x-2y=12,2x+4y=0
ផ្ទៀងផ្ទាត់។
2x-2x-2y-4y=12
ដក 2x+4y=0 ពី 2x-2y=12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2y-4y=12
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-6y=12
បូក -2y ជាមួយ -4y។
y=-2
ចែកជ្រុងទាំងពីនឹង -6។
2x+4\left(-2\right)=0
ជំនួស -2 សម្រាប់ y ក្នុង 2x+4y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x-8=0
គុណ 4 ដង -2។
2x=8
បូក 8 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=4
ចែកជ្រុងទាំងពីនឹង 2។
x=4,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។