ដោះស្រាយសម្រាប់ x, y
x = \frac{235}{2} = 117\frac{1}{2} = 117.5
y = -\frac{107}{2} = -53\frac{1}{2} = -53.5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x+y=64,12x+26y=19
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=64
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+64
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
12\left(-y+64\right)+26y=19
ជំនួស -y+64 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 12x+26y=19។
-12y+768+26y=19
គុណ 12 ដង -y+64។
14y+768=19
បូក -12y ជាមួយ 26y។
14y=-749
ដក 768 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{107}{2}
ចែកជ្រុងទាំងពីនឹង 14។
x=-\left(-\frac{107}{2}\right)+64
ជំនួស -\frac{107}{2} សម្រាប់ y ក្នុង x=-y+64។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{107}{2}+64
គុណ -1 ដង -\frac{107}{2}។
x=\frac{235}{2}
បូក 64 ជាមួយ \frac{107}{2}។
x=\frac{235}{2},y=-\frac{107}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=64,12x+26y=19
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}1&1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\12&26\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{26}{26-12}&-\frac{1}{26-12}\\-\frac{12}{26-12}&\frac{1}{26-12}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{7}&-\frac{1}{14}\\-\frac{6}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{7}\times 64-\frac{1}{14}\times 19\\-\frac{6}{7}\times 64+\frac{1}{14}\times 19\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{235}{2}\\-\frac{107}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{235}{2},y=-\frac{107}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=64,12x+26y=19
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
12x+12y=12\times 64,12x+26y=19
ដើម្បីធ្វើឲ្យ x និង 12x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 12 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
12x+12y=768,12x+26y=19
ផ្ទៀងផ្ទាត់។
12x-12x+12y-26y=768-19
ដក 12x+26y=19 ពី 12x+12y=768 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
12y-26y=768-19
បូក 12x ជាមួយ -12x។ ការលុបតួ 12x និង -12x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-14y=768-19
បូក 12y ជាមួយ -26y។
-14y=749
បូក 768 ជាមួយ -19។
y=-\frac{107}{2}
ចែកជ្រុងទាំងពីនឹង -14។
12x+26\left(-\frac{107}{2}\right)=19
ជំនួស -\frac{107}{2} សម្រាប់ y ក្នុង 12x+26y=19។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
12x-1391=19
គុណ 26 ដង -\frac{107}{2}។
12x=1410
បូក 1391 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{235}{2}
ចែកជ្រុងទាំងពីនឹង 12។
x=\frac{235}{2},y=-\frac{107}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}