រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+y=64,0.12x-0.26y=0.19
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=64
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+64
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
0.12\left(-y+64\right)-0.26y=0.19
ជំនួស -y+64 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 0.12x-0.26y=0.19។
-0.12y+7.68-0.26y=0.19
គុណ 0.12 ដង -y+64។
-0.38y+7.68=0.19
បូក -\frac{3y}{25} ជាមួយ -\frac{13y}{50}។
-0.38y=-7.49
ដក 7.68 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{749}{38}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -0.38 ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{749}{38}+64
ជំនួស \frac{749}{38} សម្រាប់ y ក្នុង x=-y+64។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{1683}{38}
បូក 64 ជាមួយ -\frac{749}{38}។
x=\frac{1683}{38},y=\frac{749}{38}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=64,0.12x-0.26y=0.19
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\0.19\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&-0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.26}{-0.26-0.12}&-\frac{1}{-0.26-0.12}\\-\frac{0.12}{-0.26-0.12}&\frac{1}{-0.26-0.12}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{50}{19}\\\frac{6}{19}&-\frac{50}{19}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{50}{19}\times 0.19\\\frac{6}{19}\times 64-\frac{50}{19}\times 0.19\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\\frac{749}{38}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{1683}{38},y=\frac{749}{38}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=64,0.12x-0.26y=0.19
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
0.12x+0.12y=0.12\times 64,0.12x-0.26y=0.19
ដើម្បីធ្វើឲ្យ x និង \frac{3x}{25} ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 0.12 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
0.12x+0.12y=7.68,0.12x-0.26y=0.19
ផ្ទៀងផ្ទាត់។
0.12x-0.12x+0.12y+0.26y=7.68-0.19
ដក 0.12x-0.26y=0.19 ពី 0.12x+0.12y=7.68 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
0.12y+0.26y=7.68-0.19
បូក \frac{3x}{25} ជាមួយ -\frac{3x}{25}។ ការលុបតួ \frac{3x}{25} និង -\frac{3x}{25} បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
0.38y=7.68-0.19
បូក \frac{3y}{25} ជាមួយ \frac{13y}{50}។
0.38y=7.49
បូក 7.68 ជាមួយ -0.19 ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
y=\frac{749}{38}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ 0.38 ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
0.12x-0.26\times \frac{749}{38}=0.19
ជំនួស \frac{749}{38} សម្រាប់ y ក្នុង 0.12x-0.26y=0.19។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
0.12x-\frac{9737}{1900}=0.19
គុណ -0.26 ដង \frac{749}{38} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
0.12x=\frac{5049}{950}
បូក \frac{9737}{1900} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1683}{38}
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ 0.12 ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1683}{38},y=\frac{749}{38}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។