រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+y=5.9,2x+4y=16.8
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=5.9
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+5.9
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
2\left(-y+5.9\right)+4y=16.8
ជំនួស -y+5.9 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+4y=16.8។
-2y+11.8+4y=16.8
គុណ 2 ដង -y+5.9។
2y+11.8=16.8
បូក -2y ជាមួយ 4y។
2y=5
ដក 11.8 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{5}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{5}{2}+5.9
ជំនួស \frac{5}{2} សម្រាប់ y ក្នុង x=-y+5.9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{17}{5}
បូក 5.9 ជាមួយ -\frac{5}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{17}{5},y=\frac{5}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=5.9,2x+4y=16.8
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\2&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{1}{4-2}\end{matrix}\right)\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 5.9-\frac{1}{2}\times 16.8\\-5.9+\frac{1}{2}\times 16.8\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{5}\\\frac{5}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{17}{5},y=\frac{5}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=5.9,2x+4y=16.8
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+2y=2\times 5.9,2x+4y=16.8
ដើម្បីធ្វើឲ្យ x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
2x+2y=11.8,2x+4y=16.8
ផ្ទៀងផ្ទាត់។
2x-2x+2y-4y=\frac{59-84}{5}
ដក 2x+4y=16.8 ពី 2x+2y=11.8 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2y-4y=\frac{59-84}{5}
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2y=\frac{59-84}{5}
បូក 2y ជាមួយ -4y។
-2y=-5
បូក 11.8 ជាមួយ -16.8 ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
y=\frac{5}{2}
ចែកជ្រុងទាំងពីនឹង -2។
2x+4\times \frac{5}{2}=16.8
ជំនួស \frac{5}{2} សម្រាប់ y ក្នុង 2x+4y=16.8។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x+10=16.8
គុណ 4 ដង \frac{5}{2}។
2x=6.8
ដក 10 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3.4
ចែកជ្រុងទាំងពីនឹង 2។
x=3.4,y=\frac{5}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។