រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+y=0,x+4y=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=0
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
-y+4y=1
ជំនួស -y សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+4y=1។
3y=1
បូក -y ជាមួយ 4y។
y=\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង 3។
x=-\frac{1}{3}
ជំនួស \frac{1}{3} សម្រាប់ y ក្នុង x=-y។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{1}{3},y=\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=0,x+4y=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}1&1\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\1&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&4\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-1}&-\frac{1}{4-1}\\-\frac{1}{4-1}&\frac{1}{4-1}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\\frac{1}{3}\end{matrix}\right)
គុណម៉ាទ្រីស។
x=-\frac{1}{3},y=\frac{1}{3}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=0,x+4y=1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x+y-4y=-1
ដក x+4y=1 ពី x+y=0 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
y-4y=-1
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-3y=-1
បូក y ជាមួយ -4y។
y=\frac{1}{3}
ចែកជ្រុងទាំងពីនឹង -3។
x+4\times \frac{1}{3}=1
ជំនួស \frac{1}{3} សម្រាប់ y ក្នុង x+4y=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x+\frac{4}{3}=1
គុណ 4 ដង \frac{1}{3}។
x=-\frac{1}{3}
ដក \frac{4}{3} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{3},y=\frac{1}{3}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។