រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

6x-2y=5,3x-2y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
6x-2y=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
6x=2y+5
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{6}\left(2y+5\right)
ចែកជ្រុងទាំងពីនឹង 6។
x=\frac{1}{3}y+\frac{5}{6}
គុណ \frac{1}{6} ដង 2y+5។
3\left(\frac{1}{3}y+\frac{5}{6}\right)-2y=2
ជំនួស \frac{y}{3}+\frac{5}{6} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x-2y=2។
y+\frac{5}{2}-2y=2
គុណ 3 ដង \frac{y}{3}+\frac{5}{6}។
-y+\frac{5}{2}=2
បូក y ជាមួយ -2y។
-y=-\frac{1}{2}
ដក \frac{5}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង -1។
x=\frac{1}{3}\times \frac{1}{2}+\frac{5}{6}
ជំនួស \frac{1}{2} សម្រាប់ y ក្នុង x=\frac{1}{3}y+\frac{5}{6}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{1+5}{6}
គុណ \frac{1}{3} ដង \frac{1}{2} ដោយការគុណភាគយក​ចំនួនដងនៃភាគយក និងភាគបែងចំនួនដងនៃភាគបែង។ បន្ទាប់មកបន្ថយប្រភាគទៅតួទាបបំផុត បើអាចធ្វើបាន។
x=1
បូក \frac{5}{6} ជាមួយ \frac{1}{6} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=1,y=\frac{1}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
6x-2y=5,3x-2y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}6&-2\\3&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{6\left(-2\right)-\left(-2\times 3\right)}&-\frac{-2}{6\left(-2\right)-\left(-2\times 3\right)}\\-\frac{3}{6\left(-2\right)-\left(-2\times 3\right)}&\frac{6}{6\left(-2\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5-\frac{1}{3}\times 2\\\frac{1}{2}\times 5-2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\\frac{1}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=\frac{1}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
6x-2y=5,3x-2y=2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
6x-3x-2y+2y=5-2
ដក 3x-2y=2 ពី 6x-2y=5 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
6x-3x=5-2
បូក -2y ជាមួយ 2y។ ការលុបតួ -2y និង 2y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
3x=5-2
បូក 6x ជាមួយ -3x។
3x=3
បូក 5 ជាមួយ -2។
x=1
ចែកជ្រុងទាំងពីនឹង 3។
3-2y=2
ជំនួស 1 សម្រាប់ x ក្នុង 3x-2y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
-2y=-1
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង -2។
x=1,y=\frac{1}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។