រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x+3y=13,x+3y=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x+3y=13
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=-3y+13
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(-3y+13\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=-\frac{3}{4}y+\frac{13}{4}
គុណ \frac{1}{4} ដង -3y+13។
-\frac{3}{4}y+\frac{13}{4}+3y=10
ជំនួស \frac{-3y+13}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+3y=10។
\frac{9}{4}y+\frac{13}{4}=10
បូក -\frac{3y}{4} ជាមួយ 3y។
\frac{9}{4}y=\frac{27}{4}
ដក \frac{13}{4} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{9}{4} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{3}{4}\times 3+\frac{13}{4}
ជំនួស 3 សម្រាប់ y ក្នុង x=-\frac{3}{4}y+\frac{13}{4}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-9+13}{4}
គុណ -\frac{3}{4} ដង 3។
x=1
បូក \frac{13}{4} ជាមួយ -\frac{9}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=1,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x+3y=13,x+3y=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}4&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}13\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&3\\1&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}13\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&3\end{matrix}\right))\left(\begin{matrix}13\\10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3}&-\frac{3}{4\times 3-3}\\-\frac{1}{4\times 3-3}&\frac{4}{4\times 3-3}\end{matrix}\right)\left(\begin{matrix}13\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{1}{9}&\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}13\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 13-\frac{1}{3}\times 10\\-\frac{1}{9}\times 13+\frac{4}{9}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x+3y=13,x+3y=10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4x-x+3y-3y=13-10
ដក x+3y=10 ពី 4x+3y=13 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4x-x=13-10
បូក 3y ជាមួយ -3y។ ការលុបតួ 3y និង -3y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
3x=13-10
បូក 4x ជាមួយ -x។
3x=3
បូក 13 ជាមួយ -10។
x=1
ចែកជ្រុងទាំងពីនឹង 3។
1+3y=10
ជំនួស 1 សម្រាប់ x ក្នុង x+3y=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
3y=9
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។