ដោះស្រាយសម្រាប់ x, y
x = \frac{31}{8} = 3\frac{7}{8} = 3.875
y=-\frac{1}{8}=-0.125
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
2x+6y=7,x-y=4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+6y=7
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-6y+7
ដក 6y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-6y+7\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-3y+\frac{7}{2}
គុណ \frac{1}{2} ដង -6y+7។
-3y+\frac{7}{2}-y=4
ជំនួស -3y+\frac{7}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-y=4។
-4y+\frac{7}{2}=4
បូក -3y ជាមួយ -y។
-4y=\frac{1}{2}
ដក \frac{7}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{1}{8}
ចែកជ្រុងទាំងពីនឹង -4។
x=-3\left(-\frac{1}{8}\right)+\frac{7}{2}
ជំនួស -\frac{1}{8} សម្រាប់ y ក្នុង x=-3y+\frac{7}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{3}{8}+\frac{7}{2}
គុណ -3 ដង -\frac{1}{8}។
x=\frac{31}{8}
បូក \frac{7}{2} ជាមួយ \frac{3}{8} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{31}{8},y=-\frac{1}{8}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+6y=7,x-y=4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&6\\1&-1\end{matrix}\right))\left(\begin{matrix}2&6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\1&-1\end{matrix}\right))\left(\begin{matrix}7\\4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&6\\1&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\1&-1\end{matrix}\right))\left(\begin{matrix}7\\4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&6\\1&-1\end{matrix}\right))\left(\begin{matrix}7\\4\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-6}&-\frac{6}{2\left(-1\right)-6}\\-\frac{1}{2\left(-1\right)-6}&\frac{2}{2\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}7\\4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{4}\\\frac{1}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}7\\4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 7+\frac{3}{4}\times 4\\\frac{1}{8}\times 7-\frac{1}{4}\times 4\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{31}{8}\\-\frac{1}{8}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{31}{8},y=-\frac{1}{8}
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+6y=7,x-y=4
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+6y=7,2x+2\left(-1\right)y=2\times 4
ដើម្បីធ្វើឲ្យ 2x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
2x+6y=7,2x-2y=8
ផ្ទៀងផ្ទាត់។
2x-2x+6y+2y=7-8
ដក 2x-2y=8 ពី 2x+6y=7 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
6y+2y=7-8
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
8y=7-8
បូក 6y ជាមួយ 2y។
8y=-1
បូក 7 ជាមួយ -8។
y=-\frac{1}{8}
ចែកជ្រុងទាំងពីនឹង 8។
x-\left(-\frac{1}{8}\right)=4
ជំនួស -\frac{1}{8} សម្រាប់ y ក្នុង x-y=4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{31}{8}
ដក \frac{1}{8} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{31}{8},y=-\frac{1}{8}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}