រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+3y=10
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម 10 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
4x-3y=20
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 3y ពីជ្រុងទាំងពីរ។
2x+3y=10,4x-3y=20
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+3y=10
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-3y+10
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-3y+10\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-\frac{3}{2}y+5
គុណ \frac{1}{2} ដង -3y+10។
4\left(-\frac{3}{2}y+5\right)-3y=20
ជំនួស -\frac{3y}{2}+5 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 4x-3y=20។
-6y+20-3y=20
គុណ 4 ដង -\frac{3y}{2}+5។
-9y+20=20
បូក -6y ជាមួយ -3y។
-9y=0
ដក 20 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=0
ចែកជ្រុងទាំងពីនឹង -9។
x=5
ជំនួស 0 សម្រាប់ y ក្នុង x=-\frac{3}{2}y+5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=5,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+3y=10
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម 10 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
4x-3y=20
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 3y ពីជ្រុងទាំងពីរ។
2x+3y=10,4x-3y=20
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&3\\4&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-3\times 4}&-\frac{3}{2\left(-3\right)-3\times 4}\\-\frac{4}{2\left(-3\right)-3\times 4}&\frac{2}{2\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{1}{6}\times 20\\\frac{2}{9}\times 10-\frac{1}{9}\times 20\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
x=5,y=0
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+3y=10
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ បន្ថែម 10 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
4x-3y=20
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 3y ពីជ្រុងទាំងពីរ។
2x+3y=10,4x-3y=20
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
4\times 2x+4\times 3y=4\times 10,2\times 4x+2\left(-3\right)y=2\times 20
ដើម្បីធ្វើឲ្យ 2x និង 4x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 4 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
8x+12y=40,8x-6y=40
ផ្ទៀងផ្ទាត់។
8x-8x+12y+6y=40-40
ដក 8x-6y=40 ពី 8x+12y=40 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
12y+6y=40-40
បូក 8x ជាមួយ -8x។ ការលុបតួ 8x និង -8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
18y=40-40
បូក 12y ជាមួយ 6y។
18y=0
បូក 40 ជាមួយ -40។
y=0
ចែកជ្រុងទាំងពីនឹង 18។
4x=20
ជំនួស 0 សម្រាប់ y ក្នុង 4x-3y=20។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=5
ចែកជ្រុងទាំងពីនឹង 4។
x=5,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។