រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

2x+2y=4,-2x+3y=-9
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
2x+2y=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
2x=-2y+4
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\left(-2y+4\right)
ចែកជ្រុងទាំងពីនឹង 2។
x=-y+2
គុណ \frac{1}{2} ដង -2y+4។
-2\left(-y+2\right)+3y=-9
ជំនួស -y+2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x+3y=-9។
2y-4+3y=-9
គុណ -2 ដង -y+2។
5y-4=-9
បូក 2y ជាមួយ 3y។
5y=-5
បូក 4 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែកជ្រុងទាំងពីនឹង 5។
x=-\left(-1\right)+2
ជំនួស -1 សម្រាប់ y ក្នុង x=-y+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=1+2
គុណ -1 ដង -1។
x=3
បូក 2 ជាមួយ 1។
x=3,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
2x+2y=4,-2x+3y=-9
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-9\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}2&2\\-2&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-9\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2\left(-2\right)}&-\frac{2}{2\times 3-2\left(-2\right)}\\-\frac{-2}{2\times 3-2\left(-2\right)}&\frac{2}{2\times 3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&-\frac{1}{5}\\\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\-9\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 4-\frac{1}{5}\left(-9\right)\\\frac{1}{5}\times 4+\frac{1}{5}\left(-9\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
2x+2y=4,-2x+3y=-9
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2\times 2x-2\times 2y=-2\times 4,2\left(-2\right)x+2\times 3y=2\left(-9\right)
ដើម្បីធ្វើឲ្យ 2x និង -2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 2។
-4x-4y=-8,-4x+6y=-18
ផ្ទៀងផ្ទាត់។
-4x+4x-4y-6y=-8+18
ដក -4x+6y=-18 ពី -4x-4y=-8 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-4y-6y=-8+18
បូក -4x ជាមួយ 4x។ ការលុបតួ -4x និង 4x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-10y=-8+18
បូក -4y ជាមួយ -6y។
-10y=10
បូក -8 ជាមួយ 18។
y=-1
ចែកជ្រុងទាំងពីនឹង -10។
-2x+3\left(-1\right)=-9
ជំនួស -1 សម្រាប់ y ក្នុង -2x+3y=-9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-2x-3=-9
គុណ 3 ដង -1។
-2x=-6
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង -2។
x=3,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។