ដោះស្រាយសម្រាប់ x, y
x=1
y=-1
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
-5x+3y=-8,-x-3y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-5x+3y=-8
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-5x=-3y-8
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{5}\left(-3y-8\right)
ចែកជ្រុងទាំងពីនឹង -5។
x=\frac{3}{5}y+\frac{8}{5}
គុណ -\frac{1}{5} ដង -3y-8។
-\left(\frac{3}{5}y+\frac{8}{5}\right)-3y=2
ជំនួស \frac{3y+8}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -x-3y=2។
-\frac{3}{5}y-\frac{8}{5}-3y=2
គុណ -1 ដង \frac{3y+8}{5}។
-\frac{18}{5}y-\frac{8}{5}=2
បូក -\frac{3y}{5} ជាមួយ -3y។
-\frac{18}{5}y=\frac{18}{5}
បូក \frac{8}{5} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-1
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{18}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{5}\left(-1\right)+\frac{8}{5}
ជំនួស -1 សម្រាប់ y ក្នុង x=\frac{3}{5}y+\frac{8}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-3+8}{5}
គុណ \frac{3}{5} ដង -1។
x=1
បូក \frac{8}{5} ជាមួយ -\frac{3}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=1,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-5x+3y=-8,-x-3y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&3\\-1&-3\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-5\left(-3\right)-3\left(-1\right)}&-\frac{3}{-5\left(-3\right)-3\left(-1\right)}\\-\frac{-1}{-5\left(-3\right)-3\left(-1\right)}&-\frac{5}{-5\left(-3\right)-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&-\frac{1}{6}\\\frac{1}{18}&-\frac{5}{18}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-8\right)-\frac{1}{6}\times 2\\\frac{1}{18}\left(-8\right)-\frac{5}{18}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=-1
ទាញយកធាតុម៉ាទ្រីស x និង y។
-5x+3y=-8,-x-3y=2
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-\left(-5\right)x-3y=-\left(-8\right),-5\left(-1\right)x-5\left(-3\right)y=-5\times 2
ដើម្បីធ្វើឲ្យ -5x និង -x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -5។
5x-3y=8,5x+15y=-10
ផ្ទៀងផ្ទាត់។
5x-5x-3y-15y=8+10
ដក 5x+15y=-10 ពី 5x-3y=8 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-15y=8+10
បូក 5x ជាមួយ -5x។ ការលុបតួ 5x និង -5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-18y=8+10
បូក -3y ជាមួយ -15y។
-18y=18
បូក 8 ជាមួយ 10។
y=-1
ចែកជ្រុងទាំងពីនឹង -18។
-x-3\left(-1\right)=2
ជំនួស -1 សម្រាប់ y ក្នុង -x-3y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-x+3=2
គុណ -3 ដង -1។
-x=-1
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង -1។
x=1,y=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}