រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

-3x+5y=2,x+10y=-24
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
-3x+5y=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
-3x=-5y+2
ដក 5y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{3}\left(-5y+2\right)
ចែកជ្រុងទាំងពីនឹង -3។
x=\frac{5}{3}y-\frac{2}{3}
គុណ -\frac{1}{3} ដង -5y+2។
\frac{5}{3}y-\frac{2}{3}+10y=-24
ជំនួស \frac{5y-2}{3} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+10y=-24។
\frac{35}{3}y-\frac{2}{3}=-24
បូក \frac{5y}{3} ជាមួយ 10y។
\frac{35}{3}y=-\frac{70}{3}
បូក \frac{2}{3} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{35}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{5}{3}\left(-2\right)-\frac{2}{3}
ជំនួស -2 សម្រាប់ y ក្នុង x=\frac{5}{3}y-\frac{2}{3}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-10-2}{3}
គុណ \frac{5}{3} ដង -2។
x=-4
បូក -\frac{2}{3} ជាមួយ -\frac{10}{3} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=-4,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
-3x+5y=2,x+10y=-24
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}-3&5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-24\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}-3&5\\1&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\-24\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}-3&5\\1&10\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\-24\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&5\\1&10\end{matrix}\right))\left(\begin{matrix}2\\-24\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-3\times 10-5}&-\frac{5}{-3\times 10-5}\\-\frac{1}{-3\times 10-5}&-\frac{3}{-3\times 10-5}\end{matrix}\right)\left(\begin{matrix}2\\-24\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{1}{7}\\\frac{1}{35}&\frac{3}{35}\end{matrix}\right)\left(\begin{matrix}2\\-24\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\times 2+\frac{1}{7}\left(-24\right)\\\frac{1}{35}\times 2+\frac{3}{35}\left(-24\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-4,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
-3x+5y=2,x+10y=-24
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-3x+5y=2,-3x-3\times 10y=-3\left(-24\right)
ដើម្បីធ្វើឲ្យ -3x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ -3។
-3x+5y=2,-3x-30y=72
ផ្ទៀងផ្ទាត់។
-3x+3x+5y+30y=2-72
ដក -3x-30y=72 ពី -3x+5y=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y+30y=2-72
បូក -3x ជាមួយ 3x។ ការលុបតួ -3x និង 3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
35y=2-72
បូក 5y ជាមួយ 30y។
35y=-70
បូក 2 ជាមួយ -72។
y=-2
ចែកជ្រុងទាំងពីនឹង 35។
x+10\left(-2\right)=-24
ជំនួស -2 សម្រាប់ y ក្នុង x+10y=-24។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-20=-24
គុណ 10 ដង -2។
x=-4
បូក 20 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=-4,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។