រំលងទៅមាតិកាមេ
គណនាដេទែមីណង់
Tick mark Image
វាយតម្លៃ
Tick mark Image

ចែករំលែក

det(\left(\begin{matrix}2&5&2\\3&2&1\\4&3&1\end{matrix}\right))
រក​ដេទីមីណង់​នៃម៉ាទ្រីសដោយការប្រើវីធីសាស្ត្រអង្កត់ទ្រូង។
\left(\begin{matrix}2&5&2&2&5\\3&2&1&3&2\\4&3&1&4&3\end{matrix}\right)
បន្លាយម៉ាទ្រីសដើមដោយបន្លាយជួរឈរពីរដំបូងសារឡើងវិញជាជួរឈរទីបួន និងទីប្រាំ។
2\times 2+5\times 4+2\times 3\times 3=42
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុលើខាងឆ្វេង ត្រូវគុណចុះតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
4\times 2\times 2+3\times 2+3\times 5=37
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុក្រោមខាងឆ្វេង ត្រូវគុណឡើងតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
42-37
ដកផលបូកនៃផលគុណអង្កត់ទ្រូងឡើងលើពីផលគុណអង្កត់ទ្រូងចុះក្រោម។
5
ដក 37 ពី 42។
det(\left(\begin{matrix}2&5&2\\3&2&1\\4&3&1\end{matrix}\right))
រកដេទែមីណង់នៃម៉ាទ្រីសដោយការប្រើវិធីសាស្ត្រពន្លាតដោយមីន័រ (ត្រូវបានស្គាល់ផងដែរថាជាការពន្លាតដោយដាក់ជាកត្តារួម)។
2det(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))-5det(\left(\begin{matrix}3&1\\4&1\end{matrix}\right))+2det(\left(\begin{matrix}3&2\\4&3\end{matrix}\right))
ដើម្បីពន្លាតដោយមីន័រ ត្រូវគុណធាតុនីមួយៗនៃជួរដេកដំបូងដោយមីន័ររបស់វាដែលជាដេទែមីណង់នៃម៉ាទ្រីស 2\times 2 ដែលបានបង្កើតដោយ​ការលុបជួរដេក និងជួរឈរដែលមានធាតុនោះ បន្ទាប់មកគុណដោយសញ្ញាទីតាំងរបស់ធាតុ។
2\left(2-3\right)-5\left(3-4\right)+2\left(3\times 3-4\times 2\right)
សម្រាប់​ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ដេទែមីណង់គឺ ad-bc។
2\left(-1\right)-5\left(-1\right)+2
ផ្ទៀងផ្ទាត់។
5
បូក​តួដើម្បីទទួលបាន​លទ្ធផលចុងក្រោយ។