រំលងទៅមាតិកាមេ
គណនាដេទែមីណង់
Tick mark Image
វាយតម្លៃ
Tick mark Image

ចែករំលែក

det(\left(\begin{matrix}1&1&0\\1&1&t\\0&1&1\end{matrix}\right))
រក​ដេទីមីណង់​នៃម៉ាទ្រីសដោយការប្រើវីធីសាស្ត្រអង្កត់ទ្រូង។
\left(\begin{matrix}1&1&0&1&1\\1&1&t&1&1\\0&1&1&0&1\end{matrix}\right)
បន្លាយម៉ាទ្រីសដើមដោយបន្លាយជួរឈរពីរដំបូងសារឡើងវិញជាជួរឈរទីបួន និងទីប្រាំ។
1=1
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុលើខាងឆ្វេង ត្រូវគុណចុះតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
t+1=t+1
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុក្រោមខាងឆ្វេង ត្រូវគុណឡើងតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
1-\left(t+1\right)
ដកផលបូកនៃផលគុណអង្កត់ទ្រូងឡើងលើពីផលគុណអង្កត់ទ្រូងចុះក្រោម។
-t
ដក t+1 ពី 1។
det(\left(\begin{matrix}1&1&0\\1&1&t\\0&1&1\end{matrix}\right))
រកដេទែមីណង់នៃម៉ាទ្រីសដោយការប្រើវិធីសាស្ត្រពន្លាតដោយមីន័រ (ត្រូវបានស្គាល់ផងដែរថាជាការពន្លាតដោយដាក់ជាកត្តារួម)។
det(\left(\begin{matrix}1&t\\1&1\end{matrix}\right))-det(\left(\begin{matrix}1&t\\0&1\end{matrix}\right))
ដើម្បីពន្លាតដោយមីន័រ ត្រូវគុណធាតុនីមួយៗនៃជួរដេកដំបូងដោយមីន័ររបស់វាដែលជាដេទែមីណង់នៃម៉ាទ្រីស 2\times 2 ដែលបានបង្កើតដោយ​ការលុបជួរដេក និងជួរឈរដែលមានធាតុនោះ បន្ទាប់មកគុណដោយសញ្ញាទីតាំងរបស់ធាតុ។
1-t-1
សម្រាប់​ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ដេទែមីណង់គឺ ad-bc។
-t
បូក​តួដើម្បីទទួលបាន​លទ្ធផលចុងក្រោយ។