រំលងទៅមាតិកាមេ
វាយតម្លៃ
Tick mark Image
ដាក់ជាកត្តា
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

det(\left(\begin{matrix}9&6&2\\2&8&7\\3&6&2\end{matrix}\right))
រក​ដេទីមីណង់​នៃម៉ាទ្រីសដោយការប្រើវីធីសាស្ត្រអង្កត់ទ្រូង។
\left(\begin{matrix}9&6&2&9&6\\2&8&7&2&8\\3&6&2&3&6\end{matrix}\right)
បន្លាយម៉ាទ្រីសដើមដោយបន្លាយជួរឈរពីរដំបូងសារឡើងវិញជាជួរឈរទីបួន និងទីប្រាំ។
9\times 8\times 2+6\times 7\times 3+2\times 2\times 6=294
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុលើខាងឆ្វេង ត្រូវគុណចុះតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
3\times 8\times 2+6\times 7\times 9+2\times 2\times 6=450
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុក្រោមខាងឆ្វេង ត្រូវគុណឡើងតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
294-450
ដកផលបូកនៃផលគុណអង្កត់ទ្រូងឡើងលើពីផលគុណអង្កត់ទ្រូងចុះក្រោម។
-156
ដក 450 ពី 294។
det(\left(\begin{matrix}9&6&2\\2&8&7\\3&6&2\end{matrix}\right))
រកដេទែមីណង់នៃម៉ាទ្រីសដោយការប្រើវិធីសាស្ត្រពន្លាតដោយមីន័រ (ត្រូវបានស្គាល់ផងដែរថាជាការពន្លាតដោយដាក់ជាកត្តារួម)។
9det(\left(\begin{matrix}8&7\\6&2\end{matrix}\right))-6det(\left(\begin{matrix}2&7\\3&2\end{matrix}\right))+2det(\left(\begin{matrix}2&8\\3&6\end{matrix}\right))
ដើម្បីពន្លាតដោយមីន័រ ត្រូវគុណធាតុនីមួយៗនៃជួរដេកដំបូងដោយមីន័ររបស់វាដែលជាដេទែមីណង់នៃម៉ាទ្រីស 2\times 2 ដែលបានបង្កើតដោយ​ការលុបជួរដេក និងជួរឈរដែលមានធាតុនោះ បន្ទាប់មកគុណដោយសញ្ញាទីតាំងរបស់ធាតុ។
9\left(8\times 2-6\times 7\right)-6\left(2\times 2-3\times 7\right)+2\left(2\times 6-3\times 8\right)
សម្រាប់​ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ដេទែមីណង់គឺ ad-bc។
9\left(-26\right)-6\left(-17\right)+2\left(-12\right)
ផ្ទៀងផ្ទាត់។
-156
បូក​តួដើម្បីទទួលបាន​លទ្ធផលចុងក្រោយ។