រំលងទៅមាតិកាមេ
វាយតម្លៃ
Tick mark Image
ដាក់ជាកត្តា
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

det(\left(\begin{matrix}3&2&1\\4&2&3\\7&5&9\end{matrix}\right))
រក​ដេទីមីណង់​នៃម៉ាទ្រីសដោយការប្រើវីធីសាស្ត្រអង្កត់ទ្រូង។
\left(\begin{matrix}3&2&1&3&2\\4&2&3&4&2\\7&5&9&7&5\end{matrix}\right)
បន្លាយម៉ាទ្រីសដើមដោយបន្លាយជួរឈរពីរដំបូងសារឡើងវិញជាជួរឈរទីបួន និងទីប្រាំ។
3\times 2\times 9+2\times 3\times 7+4\times 5=116
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុលើខាងឆ្វេង ត្រូវគុណចុះតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
7\times 2+5\times 3\times 3+9\times 4\times 2=131
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុក្រោមខាងឆ្វេង ត្រូវគុណឡើងតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
116-131
ដកផលបូកនៃផលគុណអង្កត់ទ្រូងឡើងលើពីផលគុណអង្កត់ទ្រូងចុះក្រោម។
-15
ដក 131 ពី 116។
det(\left(\begin{matrix}3&2&1\\4&2&3\\7&5&9\end{matrix}\right))
រកដេទែមីណង់នៃម៉ាទ្រីសដោយការប្រើវិធីសាស្ត្រពន្លាតដោយមីន័រ (ត្រូវបានស្គាល់ផងដែរថាជាការពន្លាតដោយដាក់ជាកត្តារួម)។
3det(\left(\begin{matrix}2&3\\5&9\end{matrix}\right))-2det(\left(\begin{matrix}4&3\\7&9\end{matrix}\right))+det(\left(\begin{matrix}4&2\\7&5\end{matrix}\right))
ដើម្បីពន្លាតដោយមីន័រ ត្រូវគុណធាតុនីមួយៗនៃជួរដេកដំបូងដោយមីន័ររបស់វាដែលជាដេទែមីណង់នៃម៉ាទ្រីស 2\times 2 ដែលបានបង្កើតដោយ​ការលុបជួរដេក និងជួរឈរដែលមានធាតុនោះ បន្ទាប់មកគុណដោយសញ្ញាទីតាំងរបស់ធាតុ។
3\left(2\times 9-5\times 3\right)-2\left(4\times 9-7\times 3\right)+4\times 5-7\times 2
សម្រាប់​ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ដេទែមីណង់គឺ ad-bc។
3\times 3-2\times 15+6
ផ្ទៀងផ្ទាត់។
-15
បូក​តួដើម្បីទទួលបាន​លទ្ធផលចុងក្រោយ។