រំលងទៅមាតិកាមេ
វាយតម្លៃ
Tick mark Image
ដាក់ជាកត្តា
Tick mark Image

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

det(\left(\begin{matrix}4&-10&2\\-10&14&26\\2&26&-34\end{matrix}\right))
រក​ដេទីមីណង់​នៃម៉ាទ្រីសដោយការប្រើវីធីសាស្ត្រអង្កត់ទ្រូង។
\left(\begin{matrix}4&-10&2&4&-10\\-10&14&26&-10&14\\2&26&-34&2&26\end{matrix}\right)
បន្លាយម៉ាទ្រីសដើមដោយបន្លាយជួរឈរពីរដំបូងសារឡើងវិញជាជួរឈរទីបួន និងទីប្រាំ។
4\times 14\left(-34\right)-10\times 26\times 2+2\left(-10\right)\times 26=-2944
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុលើខាងឆ្វេង ត្រូវគុណចុះតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
2\times 14\times 2+26\times 26\times 4-34\left(-10\right)\left(-10\right)=-640
ដើម្បីចាប់ផ្ដើមនៅត្រង់ធាតុក្រោមខាងឆ្វេង ត្រូវគុណឡើងតាមអង្កត់ទ្រូង និងបូក​លទ្ធផលផលគុណ។
-2944-\left(-640\right)
ដកផលបូកនៃផលគុណអង្កត់ទ្រូងឡើងលើពីផលគុណអង្កត់ទ្រូងចុះក្រោម។
-2304
ដក -640 ពី -2944។
det(\left(\begin{matrix}4&-10&2\\-10&14&26\\2&26&-34\end{matrix}\right))
រកដេទែមីណង់នៃម៉ាទ្រីសដោយការប្រើវិធីសាស្ត្រពន្លាតដោយមីន័រ (ត្រូវបានស្គាល់ផងដែរថាជាការពន្លាតដោយដាក់ជាកត្តារួម)។
4det(\left(\begin{matrix}14&26\\26&-34\end{matrix}\right))-\left(-10det(\left(\begin{matrix}-10&26\\2&-34\end{matrix}\right))\right)+2det(\left(\begin{matrix}-10&14\\2&26\end{matrix}\right))
ដើម្បីពន្លាតដោយមីន័រ ត្រូវគុណធាតុនីមួយៗនៃជួរដេកដំបូងដោយមីន័ររបស់វាដែលជាដេទែមីណង់នៃម៉ាទ្រីស 2\times 2 ដែលបានបង្កើតដោយ​ការលុបជួរដេក និងជួរឈរដែលមានធាតុនោះ បន្ទាប់មកគុណដោយសញ្ញាទីតាំងរបស់ធាតុ។
4\left(14\left(-34\right)-26\times 26\right)-\left(-10\left(-10\left(-34\right)-2\times 26\right)\right)+2\left(-10\times 26-2\times 14\right)
សម្រាប់​ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ដេទែមីណង់គឺ ad-bc។
4\left(-1152\right)-\left(-10\times 288\right)+2\left(-288\right)
ផ្ទៀងផ្ទាត់។
-2304
បូក​តួដើម្បីទទួលបាន​លទ្ធផលចុងក្រោយ។