រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x-2y=6,-2x+2y=8
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-2y=6
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=2y+6
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(2y+6\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{1}{2}y+\frac{3}{2}
គុណ \frac{1}{4} ដង 6+2y។
-2\left(\frac{1}{2}y+\frac{3}{2}\right)+2y=8
ជំនួស \frac{3+y}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x+2y=8។
-y-3+2y=8
គុណ -2 ដង \frac{3+y}{2}។
y-3=8
បូក -y ជាមួយ 2y។
y=11
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}\times 11+\frac{3}{2}
ជំនួស 11 សម្រាប់ y ក្នុង x=\frac{1}{2}y+\frac{3}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{11+3}{2}
គុណ \frac{1}{2} ដង 11។
x=7
បូក \frac{3}{2} ជាមួយ \frac{11}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=7,y=11
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-2y=6,-2x+2y=8
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-2\left(-2\right)\right)}&-\frac{-2}{4\times 2-\left(-2\left(-2\right)\right)}\\-\frac{-2}{4\times 2-\left(-2\left(-2\right)\right)}&\frac{4}{4\times 2-\left(-2\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 6+\frac{1}{2}\times 8\\\frac{1}{2}\times 6+8\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
ធ្វើនព្វន្ត។
x=7,y=11
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-2y=6,-2x+2y=8
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2\times 4x-2\left(-2\right)y=-2\times 6,4\left(-2\right)x+4\times 2y=4\times 8
ដើម្បីធ្វើឲ្យ 4x និង -2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
-8x+4y=-12,-8x+8y=32
ផ្ទៀងផ្ទាត់។
-8x+8x+4y-8y=-12-32
ដក -8x+8y=32 ពី -8x+4y=-12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
4y-8y=-12-32
បូក -8x ជាមួយ 8x។ ការលុបតួ -8x និង 8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-4y=-12-32
បូក 4y ជាមួយ -8y។
-4y=-44
បូក -12 ជាមួយ -32។
y=11
ចែកជ្រុងទាំងពីនឹង -4។
-2x+2\times 11=8
ជំនួស 11 សម្រាប់ y ក្នុង -2x+2y=8។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-2x+22=8
គុណ 2 ដង 11។
-2x=-14
ដក 22 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=7
ចែកជ្រុងទាំងពីនឹង -2។
x=7,y=11
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។