រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y (complex solution)
Tick mark Image
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-kx=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក kx ពីជ្រុងទាំងពីរ។
y-2x=k
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y+\left(-k\right)x=2,y-2x=k
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y+\left(-k\right)x=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=kx+2
បូក kx ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
kx+2-2x=k
ជំនួស kx+2 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-2x=k។
\left(k-2\right)x+2=k
បូក kx ជាមួយ -2x។
\left(k-2\right)x=k-2
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង k-2។
y=k+2
ជំនួស 1 សម្រាប់ x ក្នុង y=kx+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=k+2,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-kx=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក kx ពីជ្រុងទាំងពីរ។
y-2x=k
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y+\left(-k\right)x=2,y-2x=k
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\k\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\k\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-k\\1&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\k\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\k\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-k\right)}&-\frac{-k}{-2-\left(-k\right)}\\-\frac{1}{-2-\left(-k\right)}&\frac{1}{-2-\left(-k\right)}\end{matrix}\right)\left(\begin{matrix}2\\k\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{k-2}&\frac{k}{k-2}\\-\frac{1}{k-2}&\frac{1}{k-2}\end{matrix}\right)\left(\begin{matrix}2\\k\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{2}{k-2}\right)\times 2+\frac{k}{k-2}k\\\left(-\frac{1}{k-2}\right)\times 2+\frac{1}{k-2}k\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}k+2\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=k+2,x=1
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-kx=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក kx ពីជ្រុងទាំងពីរ។
y-2x=k
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y+\left(-k\right)x=2,y-2x=k
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y+\left(-k\right)x+2x=2-k
ដក y-2x=k ពី y+\left(-k\right)x=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
\left(-k\right)x+2x=2-k
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
\left(2-k\right)x=2-k
បូក -kx ជាមួយ 2x។
x=1
ចែកជ្រុងទាំងពីនឹង -k+2។
y-2=k
ជំនួស 1 សម្រាប់ x ក្នុង y-2x=k។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=k+2
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=k+2,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-kx=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក kx ពីជ្រុងទាំងពីរ។
y-2x=k
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y+\left(-k\right)x=2,y-2x=k
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y+\left(-k\right)x=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=kx+2
បូក kx ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
kx+2-2x=k
ជំនួស kx+2 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-2x=k។
\left(k-2\right)x+2=k
បូក kx ជាមួយ -2x។
\left(k-2\right)x=k-2
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង k-2។
y=k+2
ជំនួស 1 សម្រាប់ x ក្នុង y=kx+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=k+2,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-kx=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក kx ពីជ្រុងទាំងពីរ។
y-2x=k
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y+\left(-k\right)x=2,y-2x=k
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\k\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\k\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-k\\1&-2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\k\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-k\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\k\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-k\right)}&-\frac{-k}{-2-\left(-k\right)}\\-\frac{1}{-2-\left(-k\right)}&\frac{1}{-2-\left(-k\right)}\end{matrix}\right)\left(\begin{matrix}2\\k\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{k-2}&\frac{k}{k-2}\\-\frac{1}{k-2}&\frac{1}{k-2}\end{matrix}\right)\left(\begin{matrix}2\\k\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\left(-\frac{2}{k-2}\right)\times 2+\frac{k}{k-2}k\\\left(-\frac{1}{k-2}\right)\times 2+\frac{1}{k-2}k\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}k+2\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=k+2,x=1
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-kx=2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក kx ពីជ្រុងទាំងពីរ។
y-2x=k
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y+\left(-k\right)x=2,y-2x=k
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y+\left(-k\right)x+2x=2-k
ដក y-2x=k ពី y+\left(-k\right)x=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
\left(-k\right)x+2x=2-k
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
\left(2-k\right)x=2-k
បូក -kx ជាមួយ 2x។
x=1
ចែកជ្រុងទាំងពីនឹង -k+2។
y-2=k
ជំនួស 1 សម្រាប់ x ក្នុង y-2x=k។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=k+2
បូក 2 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=k+2,x=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។