រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ y, x
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

y-4x=5
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 4x ពីជ្រុងទាំងពីរ។
y-8x=9
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 8x ពីជ្រុងទាំងពីរ។
y-4x=5,y-8x=9
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-4x=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=4x+5
បូក 4x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
4x+5-8x=9
ជំនួស 4x+5 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត y-8x=9។
-4x+5=9
បូក 4x ជាមួយ -8x។
-4x=4
ដក 5 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-1
ចែកជ្រុងទាំងពីនឹង -4។
y=4\left(-1\right)+5
ជំនួស -1 សម្រាប់ x ក្នុង y=4x+5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=-4+5
គុណ 4 ដង -1។
y=1
បូក 5 ជាមួយ -4។
y=1,x=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-4x=5
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 4x ពីជ្រុងទាំងពីរ។
y-8x=9
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 8x ពីជ្រុងទាំងពីរ។
y-4x=5,y-8x=9
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-4\\1&-8\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-4\right)}&-\frac{-4}{-8-\left(-4\right)}\\-\frac{1}{-8-\left(-4\right)}&\frac{1}{-8-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\9\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&-1\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\9\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\times 5-9\\\frac{1}{4}\times 5-\frac{1}{4}\times 9\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
y=1,x=-1
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-4x=5
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 4x ពីជ្រុងទាំងពីរ។
y-8x=9
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 8x ពីជ្រុងទាំងពីរ។
y-4x=5,y-8x=9
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
y-y-4x+8x=5-9
ដក y-8x=9 ពី y-4x=5 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-4x+8x=5-9
បូក y ជាមួយ -y។ ការលុបតួ y និង -y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
4x=5-9
បូក -4x ជាមួយ 8x។
4x=-4
បូក 5 ជាមួយ -9។
x=-1
ចែកជ្រុងទាំងពីនឹង 4។
y-8\left(-1\right)=9
ជំនួស -1 សម្រាប់ x ក្នុង y-8x=9។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y+8=9
គុណ -8 ដង -1។
y=1
ដក 8 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=1,x=-1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។