\left\{ \begin{array} { l } { y = 2 x + 1 } \\ { 5 y - 7 x = 11 } \end{array} \right.
ដោះស្រាយសម្រាប់ y, x
x=2
y=5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
y-2x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x=1,5y-7x=11
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
y-2x=1
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ y ដោយការញែក y នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
y=2x+1
បូក 2x ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
5\left(2x+1\right)-7x=11
ជំនួស 2x+1 សម្រាប់ y នៅក្នុងសមីការរផ្សេងទៀត 5y-7x=11។
10x+5-7x=11
គុណ 5 ដង 2x+1។
3x+5=11
បូក 10x ជាមួយ -7x។
3x=6
ដក 5 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង 3។
y=2\times 2+1
ជំនួស 2 សម្រាប់ x ក្នុង y=2x+1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
y=4+1
គុណ 2 ដង 2។
y=5
បូក 1 ជាមួយ 4។
y=5,x=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
y-2x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x=1,5y-7x=11
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-2\\5&-7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-2\times 5\right)}&-\frac{-2}{-7-\left(-2\times 5\right)}\\-\frac{5}{-7-\left(-2\times 5\right)}&\frac{1}{-7-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{2}{3}\\-\frac{5}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}+\frac{2}{3}\times 11\\-\frac{5}{3}+\frac{1}{3}\times 11\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
y=5,x=2
ទាញយកធាតុម៉ាទ្រីស y និង x។
y-2x=1
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x=1,5y-7x=11
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5y+5\left(-2\right)x=5,5y-7x=11
ដើម្បីធ្វើឲ្យ y និង 5y ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
5y-10x=5,5y-7x=11
ផ្ទៀងផ្ទាត់។
5y-5y-10x+7x=5-11
ដក 5y-7x=11 ពី 5y-10x=5 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-10x+7x=5-11
បូក 5y ជាមួយ -5y។ ការលុបតួ 5y និង -5y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-3x=5-11
បូក -10x ជាមួយ 7x។
-3x=-6
បូក 5 ជាមួយ -11។
x=2
ចែកជ្រុងទាំងពីនឹង -3។
5y-7\times 2=11
ជំនួស 2 សម្រាប់ x ក្នុង 5y-7x=11។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
5y-14=11
គុណ -7 ដង 2។
5y=25
បូក 14 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែកជ្រុងទាំងពីនឹង 5។
y=5,x=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}