រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-y=3,3x+y=8
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y+3
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3\left(y+3\right)+y=8
ជំនួស y+3 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+y=8។
3y+9+y=8
គុណ 3 ដង y+3។
4y+9=8
បូក 3y ជាមួយ y។
4y=-1
ដក 9 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{1}{4}
ចែកជ្រុងទាំងពីនឹង 4។
x=-\frac{1}{4}+3
ជំនួស -\frac{1}{4} សម្រាប់ y ក្នុង x=y+3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{11}{4}
បូក 3 ជាមួយ -\frac{1}{4}។
x=\frac{11}{4},y=-\frac{1}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-y=3,3x+y=8
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\3&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&1\end{matrix}\right))\left(\begin{matrix}3\\8\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{-1}{1-\left(-3\right)}\\-\frac{3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\8\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3+\frac{1}{4}\times 8\\-\frac{3}{4}\times 3+\frac{1}{4}\times 8\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{4}\\-\frac{1}{4}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{11}{4},y=-\frac{1}{4}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-y=3,3x+y=8
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+3\left(-1\right)y=3\times 3,3x+y=8
ដើម្បីធ្វើឲ្យ x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
3x-3y=9,3x+y=8
ផ្ទៀងផ្ទាត់។
3x-3x-3y-y=9-8
ដក 3x+y=8 ពី 3x-3y=9 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-y=9-8
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-4y=9-8
បូក -3y ជាមួយ -y។
-4y=1
បូក 9 ជាមួយ -8។
y=-\frac{1}{4}
ចែកជ្រុងទាំងពីនឹង -4។
3x-\frac{1}{4}=8
ជំនួស -\frac{1}{4} សម្រាប់ y ក្នុង 3x+y=8។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x=\frac{33}{4}
បូក \frac{1}{4} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{11}{4}
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{11}{4},y=-\frac{1}{4}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។