រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-y=12,x+y=44
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=12
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y+12
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y+12+y=44
ជំនួស y+12 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+y=44។
2y+12=44
បូក y ជាមួយ y។
2y=32
ដក 12 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=16
ចែកជ្រុងទាំងពីនឹង 2។
x=16+12
ជំនួស 16 សម្រាប់ y ក្នុង x=y+12។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=28
បូក 12 ជាមួយ 16។
x=28,y=16
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-y=12,x+y=44
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\44\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}12\\44\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}12\\44\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}12\\44\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}12\\44\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}12\\44\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 12+\frac{1}{2}\times 44\\-\frac{1}{2}\times 12+\frac{1}{2}\times 44\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\16\end{matrix}\right)
ធ្វើនព្វន្ត។
x=28,y=16
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-y=12,x+y=44
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x-y-y=12-44
ដក x+y=44 ពី x-y=12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-y-y=12-44
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2y=12-44
បូក -y ជាមួយ -y។
-2y=-32
បូក 12 ជាមួយ -44។
y=16
ចែកជ្រុងទាំងពីនឹង -2។
x+16=44
ជំនួស 16 សម្រាប់ y ក្នុង x+y=44។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=28
ដក 16 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=28,y=16
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។