រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-y=-5,3x+2y=10
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=-5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y-5
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
3\left(y-5\right)+2y=10
ជំនួស y-5 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+2y=10។
3y-15+2y=10
គុណ 3 ដង y-5។
5y-15=10
បូក 3y ជាមួយ 2y។
5y=25
បូក 15 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែកជ្រុងទាំងពីនឹង 5។
x=5-5
ជំនួស 5 សម្រាប់ y ក្នុង x=y-5។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=0
បូក -5 ជាមួយ 5។
x=0,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-y=-5,3x+2y=10
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}1&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\3&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{-1}{2-\left(-3\right)}\\-\frac{3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-5\right)+\frac{1}{5}\times 10\\-\frac{3}{5}\left(-5\right)+\frac{1}{5}\times 10\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-y=-5,3x+2y=10
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+3\left(-1\right)y=3\left(-5\right),3x+2y=10
ដើម្បីធ្វើឲ្យ x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
3x-3y=-15,3x+2y=10
ផ្ទៀងផ្ទាត់។
3x-3x-3y-2y=-15-10
ដក 3x+2y=10 ពី 3x-3y=-15 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-3y-2y=-15-10
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-5y=-15-10
បូក -3y ជាមួយ -2y។
-5y=-25
បូក -15 ជាមួយ -10។
y=5
ចែកជ្រុងទាំងពីនឹង -5។
3x+2\times 5=10
ជំនួស 5 សម្រាប់ y ក្នុង 3x+2y=10។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x+10=10
គុណ 2 ដង 5។
3x=0
ដក 10 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=0
ចែកជ្រុងទាំងពីនឹង 3។
x=0,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។