រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-3y=4,5x+3y=-1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-3y=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=3y+4
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
5\left(3y+4\right)+3y=-1
ជំនួស 3y+4 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+3y=-1។
15y+20+3y=-1
គុណ 5 ដង 3y+4។
18y+20=-1
បូក 15y ជាមួយ 3y។
18y=-21
ដក 20 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{7}{6}
ចែកជ្រុងទាំងពីនឹង 18។
x=3\left(-\frac{7}{6}\right)+4
ជំនួស -\frac{7}{6} សម្រាប់ y ក្នុង x=3y+4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{7}{2}+4
គុណ 3 ដង -\frac{7}{6}។
x=\frac{1}{2}
បូក 4 ជាមួយ -\frac{7}{2}។
x=\frac{1}{2},y=-\frac{7}{6}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-3y=4,5x+3y=-1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-3\\5&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 5\right)}&-\frac{-3}{3-\left(-3\times 5\right)}\\-\frac{5}{3-\left(-3\times 5\right)}&\frac{1}{3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{5}{18}&\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 4+\frac{1}{6}\left(-1\right)\\-\frac{5}{18}\times 4+\frac{1}{18}\left(-1\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{7}{6}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{1}{2},y=-\frac{7}{6}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-3y=4,5x+3y=-1
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5x+5\left(-3\right)y=5\times 4,5x+3y=-1
ដើម្បីធ្វើឲ្យ x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
5x-15y=20,5x+3y=-1
ផ្ទៀងផ្ទាត់។
5x-5x-15y-3y=20+1
ដក 5x+3y=-1 ពី 5x-15y=20 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-15y-3y=20+1
បូក 5x ជាមួយ -5x។ ការលុបតួ 5x និង -5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-18y=20+1
បូក -15y ជាមួយ -3y។
-18y=21
បូក 20 ជាមួយ 1។
y=-\frac{7}{6}
ចែកជ្រុងទាំងពីនឹង -18។
5x+3\left(-\frac{7}{6}\right)=-1
ជំនួស -\frac{7}{6} សម្រាប់ y ក្នុង 5x+3y=-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x-\frac{7}{2}=-1
គុណ 3 ដង -\frac{7}{6}។
5x=\frac{5}{2}
បូក \frac{7}{2} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{2}
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{1}{2},y=-\frac{7}{6}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។