រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-2-y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
x-y=2
បន្ថែម 2 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
2x+4-y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក y ពីជ្រុងទាំងពីរ។
2x-y=-4
ដក 4 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
x-y=2,2x-y=-4
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y+2
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
2\left(y+2\right)-y=-4
ជំនួស y+2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x-y=-4។
2y+4-y=-4
គុណ 2 ដង y+2។
y+4=-4
បូក 2y ជាមួយ -y។
y=-8
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-8+2
ជំនួស -8 សម្រាប់ y ក្នុង x=y+2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-6
បូក 2 ជាមួយ -8។
x=-6,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-2-y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
x-y=2
បន្ថែម 2 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
2x+4-y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក y ពីជ្រុងទាំងពីរ។
2x-y=-4
ដក 4 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
x-y=2,2x-y=-4
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\2&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-1\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\right)}&-\frac{-1}{-1-\left(-2\right)}\\-\frac{2}{-1-\left(-2\right)}&\frac{1}{-1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\-2&1\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2-4\\-2\times 2-4\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-8\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-6,y=-8
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-2-y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
x-y=2
បន្ថែម 2 ទៅជ្រុងទាំងពីរ។ អ្វីមួយបូកសូន្យបានខ្លួនឯង។
2x+4-y=0
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក y ពីជ្រុងទាំងពីរ។
2x-y=-4
ដក 4 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
x-y=2,2x-y=-4
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-2x-y+y=2+4
ដក 2x-y=-4 ពី x-y=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
x-2x=2+4
បូក -y ជាមួយ y។ ការលុបតួ -y និង y បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-x=2+4
បូក x ជាមួយ -2x។
-x=6
បូក 2 ជាមួយ 4។
x=-6
ចែកជ្រុងទាំងពីនឹង -1។
2\left(-6\right)-y=-4
ជំនួស -6 សម្រាប់ x ក្នុង 2x-y=-4។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ y ដោយផ្ទាល់។
-12-y=-4
គុណ 2 ដង -6។
-y=8
បូក 12 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-8
ចែកជ្រុងទាំងពីនឹង -1។
x=-6,y=-8
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។