រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x-3y=-2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 3y ពីជ្រុងទាំងពីរ។
y-2x=-y
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x+y=0
បន្ថែម y ទៅជ្រុងទាំងពីរ។
2y-2x=0
បន្សំ y និង y ដើម្បីបាន 2y។
x-3y=-2,-2x+2y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-3y=-2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=3y-2
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
-2\left(3y-2\right)+2y=0
ជំនួស 3y-2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត -2x+2y=0។
-6y+4+2y=0
គុណ -2 ដង 3y-2។
-4y+4=0
បូក -6y ជាមួយ 2y។
-4y=-4
ដក 4 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=1
ចែកជ្រុងទាំងពីនឹង -4។
x=3-2
ជំនួស 1 សម្រាប់ y ក្នុង x=3y-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=1
បូក -2 ជាមួយ 3។
x=1,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x-3y=-2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 3y ពីជ្រុងទាំងពីរ។
y-2x=-y
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x+y=0
បន្ថែម y ទៅជ្រុងទាំងពីរ។
2y-2x=0
បន្សំ y និង y ដើម្បីបាន 2y។
x-3y=-2,-2x+2y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-3\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-3\\-2&2\end{matrix}\right))\left(\begin{matrix}1&-3\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&2\end{matrix}\right))\left(\begin{matrix}-2\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-3\\-2&2\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&2\end{matrix}\right))\left(\begin{matrix}-2\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&2\end{matrix}\right))\left(\begin{matrix}-2\\0\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\left(-2\right)\right)}&-\frac{-3}{2-\left(-3\left(-2\right)\right)}\\-\frac{-2}{2-\left(-3\left(-2\right)\right)}&\frac{1}{2-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&-\frac{3}{4}\\-\frac{1}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-2\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-2\right)\\-\frac{1}{2}\left(-2\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
x=1,y=1
ទាញយកធាតុម៉ាទ្រីស x និង y។
x-3y=-2
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក 3y ពីជ្រុងទាំងពីរ។
y-2x=-y
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ ដក 2x ពីជ្រុងទាំងពីរ។
y-2x+y=0
បន្ថែម y ទៅជ្រុងទាំងពីរ។
2y-2x=0
បន្សំ y និង y ដើម្បីបាន 2y។
x-3y=-2,-2x+2y=0
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
-2x-2\left(-3\right)y=-2\left(-2\right),-2x+2y=0
ដើម្បីធ្វើឲ្យ x និង -2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ -2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
-2x+6y=4,-2x+2y=0
ផ្ទៀងផ្ទាត់។
-2x+2x+6y-2y=4
ដក -2x+2y=0 ពី -2x+6y=4 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
6y-2y=4
បូក -2x ជាមួយ 2x។ ការលុបតួ -2x និង 2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
4y=4
បូក 6y ជាមួយ -2y។
y=1
ចែកជ្រុងទាំងពីនឹង 4។
-2x+2=0
ជំនួស 1 សម្រាប់ y ក្នុង -2x+2y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
-2x=-2
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=1
ចែកជ្រុងទាំងពីនឹង -2។
x=1,y=1
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។