\left\{ \begin{array} { l } { x + y = 50 } \\ { 5 x + 7 y = 300 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=25
y=25
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
x+y=50,5x+7y=300
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=50
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+50
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
5\left(-y+50\right)+7y=300
ជំនួស -y+50 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x+7y=300។
-5y+250+7y=300
គុណ 5 ដង -y+50។
2y+250=300
បូក -5y ជាមួយ 7y។
2y=50
ដក 250 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=25
ចែកជ្រុងទាំងពីនឹង 2។
x=-25+50
ជំនួស 25 សម្រាប់ y ក្នុង x=-y+50។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=25
បូក 50 ជាមួយ -25។
x=25,y=25
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=50,5x+7y=300
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\300\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}1&1\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\5&7\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&7\end{matrix}\right))\left(\begin{matrix}50\\300\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-5}&-\frac{1}{7-5}\\-\frac{5}{7-5}&\frac{1}{7-5}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{2}\\-\frac{5}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}50\\300\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 50-\frac{1}{2}\times 300\\-\frac{5}{2}\times 50+\frac{1}{2}\times 300\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\25\end{matrix}\right)
ធ្វើនព្វន្ត។
x=25,y=25
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=50,5x+7y=300
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5x+5y=5\times 50,5x+7y=300
ដើម្បីធ្វើឲ្យ x និង 5x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 5 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
5x+5y=250,5x+7y=300
ផ្ទៀងផ្ទាត់។
5x-5x+5y-7y=250-300
ដក 5x+7y=300 ពី 5x+5y=250 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
5y-7y=250-300
បូក 5x ជាមួយ -5x។ ការលុបតួ 5x និង -5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2y=250-300
បូក 5y ជាមួយ -7y។
-2y=-50
បូក 250 ជាមួយ -300។
y=25
ចែកជ្រុងទាំងពីនឹង -2។
5x+7\times 25=300
ជំនួស 25 សម្រាប់ y ក្នុង 5x+7y=300។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x+175=300
គុណ 7 ដង 25។
5x=125
ដក 175 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=25
ចែកជ្រុងទាំងពីនឹង 5។
x=25,y=25
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}