រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+y=30,2x+25y=698
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+y=30
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-y+30
ដក y ពីជ្រុងទាំងពីរនៃសមីការរ។
2\left(-y+30\right)+25y=698
ជំនួស -y+30 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+25y=698។
-2y+60+25y=698
គុណ 2 ដង -y+30។
23y+60=698
បូក -2y ជាមួយ 25y។
23y=638
ដក 60 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{638}{23}
ចែកជ្រុងទាំងពីនឹង 23។
x=-\frac{638}{23}+30
ជំនួស \frac{638}{23} សម្រាប់ y ក្នុង x=-y+30។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{52}{23}
បូក 30 ជាមួយ -\frac{638}{23}។
x=\frac{52}{23},y=\frac{638}{23}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+y=30,2x+25y=698
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\698\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}1&1\\2&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&1\\2&25\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&25\end{matrix}\right))\left(\begin{matrix}30\\698\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-2}&-\frac{1}{25-2}\\-\frac{2}{25-2}&\frac{1}{25-2}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}&-\frac{1}{23}\\-\frac{2}{23}&\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}30\\698\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{23}\times 30-\frac{1}{23}\times 698\\-\frac{2}{23}\times 30+\frac{1}{23}\times 698\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{52}{23}\\\frac{638}{23}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{52}{23},y=\frac{638}{23}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+y=30,2x+25y=698
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2x+2y=2\times 30,2x+25y=698
ដើម្បីធ្វើឲ្យ x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
2x+2y=60,2x+25y=698
ផ្ទៀងផ្ទាត់។
2x-2x+2y-25y=60-698
ដក 2x+25y=698 ពី 2x+2y=60 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
2y-25y=60-698
បូក 2x ជាមួយ -2x។ ការលុបតួ 2x និង -2x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-23y=60-698
បូក 2y ជាមួយ -25y។
-23y=-638
បូក 60 ជាមួយ -698។
y=\frac{638}{23}
ចែកជ្រុងទាំងពីនឹង -23។
2x+25\times \frac{638}{23}=698
ជំនួស \frac{638}{23} សម្រាប់ y ក្នុង 2x+25y=698។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x+\frac{15950}{23}=698
គុណ 25 ដង \frac{638}{23}។
2x=\frac{104}{23}
ដក \frac{15950}{23} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{52}{23}
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{52}{23},y=\frac{638}{23}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។