រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

x+3-y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
x-y=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
x-y=-3,x+y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x-y=-3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=y-3
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y-3+y=2
ជំនួស y-3 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x+y=2។
2y-3=2
បូក y ជាមួយ y។
2y=5
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=\frac{5}{2}
ចែកជ្រុងទាំងពីនឹង 2។
x=\frac{5}{2}-3
ជំនួស \frac{5}{2} សម្រាប់ y ក្នុង x=y-3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{1}{2}
បូក -3 ជាមួយ \frac{5}{2}។
x=-\frac{1}{2},y=\frac{5}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
x+3-y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
x-y=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
x-y=-3,x+y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&-1\\1&1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\\-\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\\\frac{5}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-\frac{1}{2},y=\frac{5}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
x+3-y=0
ផ្ទៀងផ្ទាត់សមីការរទីមួយ។ ដក y ពីជ្រុងទាំងពីរ។
x-y=-3
ដក 3 ពីជ្រុងទាំងពីរ។ អ្វីមួយដកសូន្យបានលទ្ធផលបដិសេធខ្លួនឯង។
x-y=-3,x+y=2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
x-x-y-y=-3-2
ដក x+y=2 ពី x-y=-3 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-y-y=-3-2
បូក x ជាមួយ -x។ ការលុបតួ x និង -x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-2y=-3-2
បូក -y ជាមួយ -y។
-2y=-5
បូក -3 ជាមួយ -2។
y=\frac{5}{2}
ចែកជ្រុងទាំងពីនឹង -2។
x+\frac{5}{2}=2
ជំនួស \frac{5}{2} សម្រាប់ y ក្នុង x+y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-\frac{1}{2}
ដក \frac{5}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
x=-\frac{1}{2},y=\frac{5}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។