\left\{ \begin{array} { l } { x + 2 y = - 2 } \\ { 4 y = 1 - 3 x } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=5
y = -\frac{7}{2} = -3\frac{1}{2} = -3.5
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
4y+3x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3x ទៅជ្រុងទាំងពីរ។
x+2y=-2,3x+4y=1
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
x+2y=-2
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
x=-2y-2
ដក 2y ពីជ្រុងទាំងពីរនៃសមីការរ។
3\left(-2y-2\right)+4y=1
ជំនួស -2y-2 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 3x+4y=1។
-6y-6+4y=1
គុណ 3 ដង -2y-2។
-2y-6=1
បូក -6y ជាមួយ 4y។
-2y=7
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=-\frac{7}{2}
ចែកជ្រុងទាំងពីនឹង -2។
x=-2\left(-\frac{7}{2}\right)-2
ជំនួស -\frac{7}{2} សម្រាប់ y ក្នុង x=-2y-2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=7-2
គុណ -2 ដង -\frac{7}{2}។
x=5
បូក -2 ជាមួយ 7។
x=5,y=-\frac{7}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4y+3x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3x ទៅជ្រុងទាំងពីរ។
x+2y=-2,3x+4y=1
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}1&2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}1&2\\3&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&4\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 3}&-\frac{2}{4-2\times 3}\\-\frac{3}{4-2\times 3}&\frac{1}{4-2\times 3}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\left(-2\right)+1\\\frac{3}{2}\left(-2\right)-\frac{1}{2}\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-\frac{7}{2}\end{matrix}\right)
ធ្វើនព្វន្ត។
x=5,y=-\frac{7}{2}
ទាញយកធាតុម៉ាទ្រីស x និង y។
4y+3x=1
ផ្ទៀងផ្ទាត់សមីការរទីពីរ។ បន្ថែម 3x ទៅជ្រុងទាំងពីរ។
x+2y=-2,3x+4y=1
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
3x+3\times 2y=3\left(-2\right),3x+4y=1
ដើម្បីធ្វើឲ្យ x និង 3x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 3 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 1។
3x+6y=-6,3x+4y=1
ផ្ទៀងផ្ទាត់។
3x-3x+6y-4y=-6-1
ដក 3x+4y=1 ពី 3x+6y=-6 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
6y-4y=-6-1
បូក 3x ជាមួយ -3x។ ការលុបតួ 3x និង -3x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
2y=-6-1
បូក 6y ជាមួយ -4y។
2y=-7
បូក -6 ជាមួយ -1។
y=-\frac{7}{2}
ចែកជ្រុងទាំងពីនឹង 2។
3x+4\left(-\frac{7}{2}\right)=1
ជំនួស -\frac{7}{2} សម្រាប់ y ក្នុង 3x+4y=1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
3x-14=1
គុណ 4 ដង -\frac{7}{2}។
3x=15
បូក 14 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=5
ចែកជ្រុងទាំងពីនឹង 3។
x=5,y=-\frac{7}{2}
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}