រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

7x-6y=-30,x-4y=-20
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
7x-6y=-30
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
7x=6y-30
បូក 6y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{7}\left(6y-30\right)
ចែកជ្រុងទាំងពីនឹង 7។
x=\frac{6}{7}y-\frac{30}{7}
គុណ \frac{1}{7} ដង -30+6y។
\frac{6}{7}y-\frac{30}{7}-4y=-20
ជំនួស \frac{-30+6y}{7} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត x-4y=-20។
-\frac{22}{7}y-\frac{30}{7}=-20
បូក \frac{6y}{7} ជាមួយ -4y។
-\frac{22}{7}y=-\frac{110}{7}
បូក \frac{30}{7} ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=5
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{22}{7} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{6}{7}\times 5-\frac{30}{7}
ជំនួស 5 សម្រាប់ y ក្នុង x=\frac{6}{7}y-\frac{30}{7}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{30-30}{7}
គុណ \frac{6}{7} ដង 5។
x=0
បូក -\frac{30}{7} ជាមួយ \frac{30}{7} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=0,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
7x-6y=-30,x-4y=-20
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\-20\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}7&-6\\1&-4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-6\\1&-4\end{matrix}\right))\left(\begin{matrix}-30\\-20\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7\left(-4\right)-\left(-6\right)}&-\frac{-6}{7\left(-4\right)-\left(-6\right)}\\-\frac{1}{7\left(-4\right)-\left(-6\right)}&\frac{7}{7\left(-4\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-30\\-20\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{3}{11}\\\frac{1}{22}&-\frac{7}{22}\end{matrix}\right)\left(\begin{matrix}-30\\-20\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\left(-30\right)-\frac{3}{11}\left(-20\right)\\\frac{1}{22}\left(-30\right)-\frac{7}{22}\left(-20\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
ធ្វើនព្វន្ត។
x=0,y=5
ទាញយកធាតុម៉ាទ្រីស x និង y។
7x-6y=-30,x-4y=-20
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
7x-6y=-30,7x+7\left(-4\right)y=7\left(-20\right)
ដើម្បីធ្វើឲ្យ 7x និង x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 1 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 7។
7x-6y=-30,7x-28y=-140
ផ្ទៀងផ្ទាត់។
7x-7x-6y+28y=-30+140
ដក 7x-28y=-140 ពី 7x-6y=-30 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-6y+28y=-30+140
បូក 7x ជាមួយ -7x។ ការលុបតួ 7x និង -7x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
22y=-30+140
បូក -6y ជាមួយ 28y។
22y=110
បូក -30 ជាមួយ 140។
y=5
ចែកជ្រុងទាំងពីនឹង 22។
x-4\times 5=-20
ជំនួស 5 សម្រាប់ y ក្នុង x-4y=-20។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x-20=-20
គុណ -4 ដង 5។
x=0
បូក 20 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=0,y=5
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។