\left\{ \begin{array} { l } { 5 x - 6 y = - 3 } \\ { 5 x - 3 y = 3 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
y=2
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x-6y=-3,5x-3y=3
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-6y=-3
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=6y-3
បូក 6y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(6y-3\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{6}{5}y-\frac{3}{5}
គុណ \frac{1}{5} ដង 6y-3។
5\left(\frac{6}{5}y-\frac{3}{5}\right)-3y=3
ជំនួស \frac{6y-3}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 5x-3y=3។
6y-3-3y=3
គុណ 5 ដង \frac{6y-3}{5}។
3y-3=3
បូក 6y ជាមួយ -3y។
3y=6
បូក 3 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=2
ចែកជ្រុងទាំងពីនឹង 3។
x=\frac{6}{5}\times 2-\frac{3}{5}
ជំនួស 2 សម្រាប់ y ក្នុង x=\frac{6}{5}y-\frac{3}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{12-3}{5}
គុណ \frac{6}{5} ដង 2។
x=\frac{9}{5}
បូក -\frac{3}{5} ជាមួយ \frac{12}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=\frac{9}{5},y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-6y=-3,5x-3y=3
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-6\\5&-3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\5&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-\left(-6\times 5\right)}&-\frac{-6}{5\left(-3\right)-\left(-6\times 5\right)}\\-\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}&\frac{5}{5\left(-3\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-3\right)+\frac{2}{5}\times 3\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\times 3\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=\frac{9}{5},y=2
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-6y=-3,5x-3y=3
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
5x-5x-6y+3y=-3-3
ដក 5x-3y=3 ពី 5x-6y=-3 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-6y+3y=-3-3
បូក 5x ជាមួយ -5x។ ការលុបតួ 5x និង -5x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-3y=-3-3
បូក -6y ជាមួយ 3y។
-3y=-6
បូក -3 ជាមួយ -3។
y=2
ចែកជ្រុងទាំងពីនឹង -3។
5x-3\times 2=3
ជំនួស 2 សម្រាប់ y ក្នុង 5x-3y=3។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
5x-6=3
គុណ -3 ដង 2។
5x=9
បូក 6 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{9}{5}
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{9}{5},y=2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}