\left\{ \begin{array} { l } { 5 x - 3 y = 28 } \\ { 12 x + 4 y = 0 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=2
y=-6
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
5x-3y=28,12x+4y=0
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-3y=28
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=3y+28
បូក 3y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(3y+28\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{3}{5}y+\frac{28}{5}
គុណ \frac{1}{5} ដង 3y+28។
12\left(\frac{3}{5}y+\frac{28}{5}\right)+4y=0
ជំនួស \frac{3y+28}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 12x+4y=0។
\frac{36}{5}y+\frac{336}{5}+4y=0
គុណ 12 ដង \frac{3y+28}{5}។
\frac{56}{5}y+\frac{336}{5}=0
បូក \frac{36y}{5} ជាមួយ 4y។
\frac{56}{5}y=-\frac{336}{5}
ដក \frac{336}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-6
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{56}{5} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{3}{5}\left(-6\right)+\frac{28}{5}
ជំនួស -6 សម្រាប់ y ក្នុង x=\frac{3}{5}y+\frac{28}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{-18+28}{5}
គុណ \frac{3}{5} ដង -6។
x=2
បូក \frac{28}{5} ជាមួយ -\frac{18}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-3y=28,12x+4y=0
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\0\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}5&-3\\12&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-3\\12&4\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\12&4\end{matrix}\right))\left(\begin{matrix}28\\0\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-3\times 12\right)}&-\frac{-3}{5\times 4-\left(-3\times 12\right)}\\-\frac{12}{5\times 4-\left(-3\times 12\right)}&\frac{5}{5\times 4-\left(-3\times 12\right)}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{56}\\-\frac{3}{14}&\frac{5}{56}\end{matrix}\right)\left(\begin{matrix}28\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 28\\-\frac{3}{14}\times 28\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-6\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=-6
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-3y=28,12x+4y=0
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
12\times 5x+12\left(-3\right)y=12\times 28,5\times 12x+5\times 4y=0
ដើម្បីធ្វើឲ្យ 5x និង 12x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 12 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
60x-36y=336,60x+20y=0
ផ្ទៀងផ្ទាត់។
60x-60x-36y-20y=336
ដក 60x+20y=0 ពី 60x-36y=336 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-36y-20y=336
បូក 60x ជាមួយ -60x។ ការលុបតួ 60x និង -60x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-56y=336
បូក -36y ជាមួយ -20y។
y=-6
ចែកជ្រុងទាំងពីនឹង -56។
12x+4\left(-6\right)=0
ជំនួស -6 សម្រាប់ y ក្នុង 12x+4y=0។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
12x-24=0
គុណ 4 ដង -6។
12x=24
បូក 24 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=2
ចែកជ្រុងទាំងពីនឹង 12។
x=2,y=-6
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}