រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
5x-2y=4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
5x=2y+4
បូក 2y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{5}\left(2y+4\right)
ចែកជ្រុងទាំងពីនឹង 5។
x=\frac{2}{5}y+\frac{4}{5}
គុណ \frac{1}{5} ដង 4+2y។
\frac{1}{2}\left(\frac{2}{5}y+\frac{4}{5}\right)+\frac{1}{3}y=2
ជំនួស \frac{4+2y}{5} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត \frac{1}{2}x+\frac{1}{3}y=2។
\frac{1}{5}y+\frac{2}{5}+\frac{1}{3}y=2
គុណ \frac{1}{2} ដង \frac{4+2y}{5}។
\frac{8}{15}y+\frac{2}{5}=2
បូក \frac{y}{5} ជាមួយ \frac{y}{3}។
\frac{8}{15}y=\frac{8}{5}
ដក \frac{2}{5} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=3
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{8}{15} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{2}{5}\times 3+\frac{4}{5}
ជំនួស 3 សម្រាប់ y ក្នុង x=\frac{2}{5}y+\frac{4}{5}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{6+4}{5}
គុណ \frac{2}{5} ដង 3។
x=2
បូក \frac{4}{5} ជាមួយ \frac{6}{5} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=2,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&-\frac{-2}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}&\frac{5}{5\times \frac{1}{3}-\left(-2\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{3}{4}\\-\frac{3}{16}&\frac{15}{8}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 4+\frac{3}{4}\times 2\\-\frac{3}{16}\times 4+\frac{15}{8}\times 2\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ធ្វើនព្វន្ត។
x=2,y=3
ទាញយកធាតុម៉ាទ្រីស x និង y។
5x-2y=4,\frac{1}{2}x+\frac{1}{3}y=2
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
\frac{1}{2}\times 5x+\frac{1}{2}\left(-2\right)y=\frac{1}{2}\times 4,5\times \frac{1}{2}x+5\times \frac{1}{3}y=5\times 2
ដើម្បីធ្វើឲ្យ 5x និង \frac{x}{2} ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ \frac{1}{2} និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 5។
\frac{5}{2}x-y=2,\frac{5}{2}x+\frac{5}{3}y=10
ផ្ទៀងផ្ទាត់។
\frac{5}{2}x-\frac{5}{2}x-y-\frac{5}{3}y=2-10
ដក \frac{5}{2}x+\frac{5}{3}y=10 ពី \frac{5}{2}x-y=2 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-y-\frac{5}{3}y=2-10
បូក \frac{5x}{2} ជាមួយ -\frac{5x}{2}។ ការលុបតួ \frac{5x}{2} និង -\frac{5x}{2} បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-\frac{8}{3}y=2-10
បូក -y ជាមួយ -\frac{5y}{3}។
-\frac{8}{3}y=-8
បូក 2 ជាមួយ -10។
y=3
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{8}{3} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
\frac{1}{2}x+\frac{1}{3}\times 3=2
ជំនួស 3 សម្រាប់ y ក្នុង \frac{1}{2}x+\frac{1}{3}y=2។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
\frac{1}{2}x+1=2
គុណ \frac{1}{3} ដង 3។
\frac{1}{2}x=1
ដក 1 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=2
គុណជ្រុងទាំងពីរនឹង 2។
x=2,y=3
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។