\left\{ \begin{array} { l } { 4 x - y = 5 } \\ { 2 x + 3 y = 27 } \end{array} \right.
ដោះស្រាយសម្រាប់ x, y
x=3
y=7
ក្រាហ្វ
ចែករំលែក
ចម្លង ទៅ ក្តារ បន្ទះ ឃ្លីប
4x-y=5,2x+3y=27
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-y=5
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=y+5
បូក y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(y+5\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{1}{4}y+\frac{5}{4}
គុណ \frac{1}{4} ដង y+5។
2\left(\frac{1}{4}y+\frac{5}{4}\right)+3y=27
ជំនួស \frac{5+y}{4} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x+3y=27។
\frac{1}{2}y+\frac{5}{2}+3y=27
គុណ 2 ដង \frac{5+y}{4}។
\frac{7}{2}y+\frac{5}{2}=27
បូក \frac{y}{2} ជាមួយ 3y។
\frac{7}{2}y=\frac{49}{2}
ដក \frac{5}{2} ពីជ្រុងទាំងពីរនៃសមីការរ។
y=7
ចែកជ្រុងទាំងពីរនៃសមីការរដោយ \frac{7}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=\frac{1}{4}\times 7+\frac{5}{4}
ជំនួស 7 សម្រាប់ y ក្នុង x=\frac{1}{4}y+\frac{5}{4}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{7+5}{4}
គុណ \frac{1}{4} ដង 7។
x=3
បូក \frac{5}{4} ជាមួយ \frac{7}{4} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មកបន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=7
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-y=5,2x+3y=27
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មកប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\27\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-1\\2&3\end{matrix}\right))\left(\begin{matrix}4&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\27\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-1\\2&3\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\27\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\27\end{matrix}\right)
គុណម៉ាទ្រីសនៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\right)}&-\frac{-1}{4\times 3-\left(-2\right)}\\-\frac{2}{4\times 3-\left(-2\right)}&\frac{4}{4\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\27\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{1}{14}\\-\frac{1}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}5\\27\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 5+\frac{1}{14}\times 27\\-\frac{1}{7}\times 5+\frac{2}{7}\times 27\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=7
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-y=5,2x+3y=27
ដើម្បីដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\times 4x+2\left(-1\right)y=2\times 5,4\times 2x+4\times 3y=4\times 27
ដើម្បីធ្វើឲ្យ 4x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
8x-2y=10,8x+12y=108
ផ្ទៀងផ្ទាត់។
8x-8x-2y-12y=10-108
ដក 8x+12y=108 ពី 8x-2y=10 ដោយការដកតួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-2y-12y=10-108
បូក 8x ជាមួយ -8x។ ការលុបតួ 8x និង -8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-14y=10-108
បូក -2y ជាមួយ -12y។
-14y=-98
បូក 10 ជាមួយ -108។
y=7
ចែកជ្រុងទាំងពីនឹង -14។
2x+3\times 7=27
ជំនួស 7 សម្រាប់ y ក្នុង 2x+3y=27។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x+21=27
គុណ 3 ដង 7។
2x=6
ដក 21 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 2។
x=3,y=7
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
ឧទាហរណ៏
សមីការ Quadratic
{ x } ^ { 2 } - 4 x - 5 = 0
ត្រីកោណមាត្រ
4 \sin \theta \cos \theta = 2 \sin \theta
សមីការ Linear
y = 3x + 4
គណិតវិទ្យា
699 * 533
ម៉ាទ្រីស
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
សមីការដំណាលគ្នា
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ភាពខុសគ្នា
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
សមាហរណកម្ម
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ដែន កំណត់
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}