រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x-7y=-4,7x+5y=-7
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x-7y=-4
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=7y-4
បូក 7y ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(7y-4\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=\frac{7}{4}y-1
គុណ \frac{1}{4} ដង 7y-4។
7\left(\frac{7}{4}y-1\right)+5y=-7
ជំនួស \frac{7y}{4}-1 សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 7x+5y=-7។
\frac{49}{4}y-7+5y=-7
គុណ 7 ដង \frac{7y}{4}-1។
\frac{69}{4}y-7=-7
បូក \frac{49y}{4} ជាមួយ 5y។
\frac{69}{4}y=0
បូក 7 ជាមួយជ្រុងទាំងពីរនៃសមីការរ។
y=0
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ \frac{69}{4} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-1
ជំនួស 0 សម្រាប់ y ក្នុង x=\frac{7}{4}y-1។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-1,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x-7y=-4,7x+5y=-7
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&-7\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-7\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}4&-7\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&-7\\7&5\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\7&5\end{matrix}\right))\left(\begin{matrix}-4\\-7\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-7\times 7\right)}&-\frac{-7}{4\times 5-\left(-7\times 7\right)}\\-\frac{7}{4\times 5-\left(-7\times 7\right)}&\frac{4}{4\times 5-\left(-7\times 7\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-7\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{69}&\frac{7}{69}\\-\frac{7}{69}&\frac{4}{69}\end{matrix}\right)\left(\begin{matrix}-4\\-7\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{69}\left(-4\right)+\frac{7}{69}\left(-7\right)\\-\frac{7}{69}\left(-4\right)+\frac{4}{69}\left(-7\right)\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\0\end{matrix}\right)
ធ្វើនព្វន្ត។
x=-1,y=0
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x-7y=-4,7x+5y=-7
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
7\times 4x+7\left(-7\right)y=7\left(-4\right),4\times 7x+4\times 5y=4\left(-7\right)
ដើម្បីធ្វើឲ្យ 4x និង 7x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 7 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
28x-49y=-28,28x+20y=-28
ផ្ទៀងផ្ទាត់។
28x-28x-49y-20y=-28+28
ដក 28x+20y=-28 ពី 28x-49y=-28 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
-49y-20y=-28+28
បូក 28x ជាមួយ -28x។ ការលុបតួ 28x និង -28x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
-69y=-28+28
បូក -49y ជាមួយ -20y។
-69y=0
បូក -28 ជាមួយ 28។
y=0
ចែកជ្រុងទាំងពីនឹង -69។
7x=-7
ជំនួស 0 សម្រាប់ y ក្នុង 7x+5y=-7។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=-1
ចែកជ្រុងទាំងពីនឹង 7។
x=-1,y=0
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។