រំលងទៅមាតិកាមេ
ដោះស្រាយសម្រាប់ x, y
Tick mark Image
ក្រាហ្វ

បញ្ហាស្រដៀងគ្នាពី Web Search

ចែករំលែក

4x+3y=6,2x-y=8
ដើម្បីដោះស្រាយគូនៃសមីការដោយការប្រើការ​ជំនួស ដំបូងត្រូវដោះស្រាយសមីការមួយសម្រាប់អថេរមួយ។ បន្ទាប់មកជំនួសលទ្ធផលសម្រាប់អថេរនោះនៅក្នុងសមីការផ្សេងទៀត។
4x+3y=6
ជ្រើសរើសសមីការរមួយ ហើយដោះស្រាយសមីការរសម្រាប់ x ដោយការញែក x នៅផ្នែកខាងឆ្វេងនៃសញ្ញាស្មើ។
4x=-3y+6
ដក 3y ពីជ្រុងទាំងពីរនៃសមីការរ។
x=\frac{1}{4}\left(-3y+6\right)
ចែកជ្រុងទាំងពីនឹង 4។
x=-\frac{3}{4}y+\frac{3}{2}
គុណ \frac{1}{4} ដង -3y+6។
2\left(-\frac{3}{4}y+\frac{3}{2}\right)-y=8
ជំនួស -\frac{3y}{4}+\frac{3}{2} សម្រាប់ x នៅក្នុងសមីការរផ្សេងទៀត 2x-y=8។
-\frac{3}{2}y+3-y=8
គុណ 2 ដង -\frac{3y}{4}+\frac{3}{2}។
-\frac{5}{2}y+3=8
បូក -\frac{3y}{2} ជាមួយ -y។
-\frac{5}{2}y=5
ដក 3 ពីជ្រុងទាំងពីរនៃសមីការរ។
y=-2
ចែក​ជ្រុងទាំងពីរនៃសមីការរដោយ -\frac{5}{2} ដែលដូចគ្នានឹងការធ្វើប្រមាណវិធីគុណ​ជ្រុងទាំងពីរដោយប្រភាគផ្ទុយគ្នា។
x=-\frac{3}{4}\left(-2\right)+\frac{3}{2}
ជំនួស -2 សម្រាប់ y ក្នុង x=-\frac{3}{4}y+\frac{3}{2}។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
x=\frac{3+3}{2}
គុណ -\frac{3}{4} ដង -2។
x=3
បូក \frac{3}{2} ជាមួយ \frac{3}{2} ដោយការរកភាគបែងរួម និងបូកភាគយក។ បន្ទាប់មក​បន្ថយប្រភាគទៅតួតូចបំផុតបើអាចធ្វើបាន។
x=3,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។
4x+3y=6,2x-y=8
ដាក់សមីការនៅក្នុងទម្រង់ស្ដង់ដារ បន្ទាប់មក​ប្រើម៉ាទ្រីសដើម្បីដោះស្រាយប្រព័ន្ធសមីការ។
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
សរសេរសមីការជាទម្រង់ម៉ាទ្រីស។
inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
ការគុណសមីការរខាងឆ្វេងតាមម៉ាទ្រីសច្រាសនៃ \left(\begin{matrix}4&3\\2&-1\end{matrix}\right)។
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
ផលគុណនៃម៉ាទ្រីស និងចម្រាសរបស់វាគឺជាម៉ាទ្រីសឯកតា។
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
គុណ​ម៉ាទ្រីស​នៅខាងឆ្វេងនៃសញ្ញាស្មើ។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-3\times 2}&-\frac{3}{4\left(-1\right)-3\times 2}\\-\frac{2}{4\left(-1\right)-3\times 2}&\frac{4}{4\left(-1\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
សម្រាប់ម៉ាទ្រីស 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ម៉ាទ្រីសបញ្ច្រាសគឺ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ដូច្នេះសមីការរម៉ាទ្រីសអាចត្រូវបានសរសេរឡើងវិញជាចំណោទផលគុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
ធ្វើនព្វន្ត។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 6+\frac{3}{10}\times 8\\\frac{1}{5}\times 6-\frac{2}{5}\times 8\end{matrix}\right)
គុណម៉ាទ្រីស។
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
ធ្វើនព្វន្ត។
x=3,y=-2
ទាញយកធាតុម៉ាទ្រីស x និង y។
4x+3y=6,2x-y=8
ដើម្បី​ដោះស្រាយដោយការ សម្រួល មេគុណមួយនៃអថេរត្រូវតែដូចគ្នានៅក្នុងសមីការទាំងពីរដូច្នេះអថេរនឹងលុបចេញនៅពេលសមីការមួយត្រូវបានដកពីសមីការផ្សេងទៀត។
2\times 4x+2\times 3y=2\times 6,4\times 2x+4\left(-1\right)y=4\times 8
ដើម្បីធ្វើឲ្យ 4x និង 2x ស្មើគ្នា ត្រូវគុណតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីមួយដោយ 2 និងតួទាំងអស់នៅលើជ្រុងនីមួយៗនៃសមីការរទីពីដោយ 4។
8x+6y=12,8x-4y=32
ផ្ទៀងផ្ទាត់។
8x-8x+6y+4y=12-32
ដក 8x-4y=32 ពី 8x+6y=12 ដោយការដក​តួដូចគ្នានៅលើជ្រុងម្ខាងទៀតនៃសញ្ញាស្មើ។
6y+4y=12-32
បូក 8x ជាមួយ -8x។ ការលុបតួ 8x និង -8x បន្សល់នូវសមីការរដែលមានចំនួនអថេរតែមួយគត់ដែលអាចដោះស្រាយបាន។
10y=12-32
បូក 6y ជាមួយ 4y។
10y=-20
បូក 12 ជាមួយ -32។
y=-2
ចែកជ្រុងទាំងពីនឹង 10។
2x-\left(-2\right)=8
ជំនួស -2 សម្រាប់ y ក្នុង 2x-y=8។ ពីព្រោះលទ្ធផលសមីការរមានអថេរតែមួយដែលអ្នកអាចដោះស្រាយសម្រាប់ x ដោយផ្ទាល់។
2x=6
ដក 2 ពីជ្រុងទាំងពីរនៃសមីការរ។
x=3
ចែកជ្រុងទាំងពីនឹង 2។
x=3,y=-2
ប្រព័ន្ធឥឡូវនេះត្រូវបានដោះស្រាយ។